Skip to main content

Advertisement

Log in

Assessing the Role of pH in Determining Water Column Nitrification Rates in a Coastal System

  • Note
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Ocean acidification is predicted to impact the nitrogen cycle in a variety of ways. Specifically, manipulations of water column pH have shown that nitrification, the microbial conversion of ammonium to nitrate, is inhibited at low pH. A decrease in nitrification may impact phytoplankton composition and production, denitrification, and the production of nitrous oxide. We compiled an existing unique data set of concurrent water column nitrification rates and water column pH values from a temperate New England estuary (Narragansett Bay, RI, USA). Contrary to the current hypothesis, we found that nitrification rates were highest at low pH and significantly (P = 0.0031) lower at high water column pH. In this study, pH varied up to 0.85 units, 20% more than the maximum predicted ocean pH decrease of 0.7 units. These results highlight that nitrifying organisms in coastal systems tolerate a wide range of pH values. Moreover, the degree of negative correlation with pH may depend on site-specific environmental conditions. Combined, these findings indicate that the current hypothesis of the negative impacts of ocean acidification on nitrification, at least for the coastal ocean, might need reevaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Anthonisen, A.C., et al. 1976. Inhibition of nitrification by ammonia and nitrous acid. Journal of Water Pollution Control Fed 48(5): 835–852.

    CAS  Google Scholar 

  • Beman, J.M., et al. 2011. Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proceedings of the National Academy of Sciences of the United States of America 108(1): 208–213.

    Article  CAS  Google Scholar 

  • Bernhard, A.E., and A. Bollman. 2010. Estuarine nitrifiers: New players, patterns, and processes. Estuarine Coastal and Shelf Science 88: 1–11.

    Article  CAS  Google Scholar 

  • Bernhard, A.E., D. Colbert, J. Mcmanus, and K.G. Field. 2005a. Microbial community dynamics based on 16S rRNA gene profiles in a Pacific Northwest estuary and its tributaries. FEMS Microbiology Ecology 52: 115–128.

    Article  CAS  Google Scholar 

  • Bernhard, A.E., T. Donn, A.E. Giblin, and D.A. Stahl. 2005b. Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary system. Environmental Microbiology 7: 1289–1297.

    Article  CAS  Google Scholar 

  • Bernhard, A.E., Z.C. Landry, A. Blevins, J.R. De La Torre, A.E. Giblin, and D.A. Stahl. 2010. Abundance of ammonia-oxidizing archaea and bacteria along an estuarine salinity gradient in relation to potential nitrification rates. Applied and Environmental Microbiology 76: 1285–1289.

    Article  CAS  Google Scholar 

  • Berounsky, V.M. 1990. Rate of nitrification and their importance to the nitrogen cycle of Narragansett Bay. Rhode Island: University of Rhode Island.

    Google Scholar 

  • Berounsky, V.M., and S.W. Nixon. 1985a. Eutrophication and the rate of net nitrification in a coastal marine ecosystem. Estuar Coast Shelf S 20: 773–781.

    Article  CAS  Google Scholar 

  • Berounsky, V.M., and S.W. Nixon. 1985b. The role of nitrification in contributing to low oxygen conditions in the Providence River Estuary (Ri). Estuaries 8: A102–A102.

    Google Scholar 

  • Berounsky, V.M., and S.W. Nixon. 1990. Temperature and the annual cycle of nitrification in waters of Narragansett Bay. Limnology and Oceanography 35: 1610–1617.

    Article  CAS  Google Scholar 

  • Berounsky, V.M., and S.W. Nixon. 1993. Rates of nitrification along an estuarine gradient in Narragansett Bay. Estuaries 16: 718–730.

    Article  CAS  Google Scholar 

  • Bianchi, M., F. Feliatra, P. Treguer, M.A. Vincendeau, and J. Morvan. 1997. Nitrification rates, ammonium and nitrate distribution in upper layers of the water column and in sediments of the Indian sector of the Southern Ocean. Deep-Sea Res Pt Ii 44: 1017–1032.

    Article  CAS  Google Scholar 

  • Blackford, J.C., and F.J. Gilbert. 2007. pH variability and CO2 induced acidification in the North Sea. Journal of Marine Systems 64(1–4): 229–241.

    Article  Google Scholar 

  • Caffrey, J.M., N. Harrington, I. Solem, and B.B. Ward. 2003. Biogeochemical processes in a small California estuary. 2. Nitrification activity, community structure and role in nitrogen budgets. Marine Ecology Progress Series 248: 27–40.

    Article  CAS  Google Scholar 

  • Caffrey, J.M., N. Bano, K. Kalanetra, and J.T. Hollibaugh. 2007. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia. The ISME Journal 1: 660–662.

    Article  Google Scholar 

  • Caldeira, K., and M.E. Wickett. 2003. Anthropogenic carbon and ocean pH. Nature 425: 365–365.

    Article  CAS  Google Scholar 

  • Crump, B.C., C.S. Hopkinson, M.L. Sogin, and J.E. Hobbie. 2004. Microbial biogeography along an estuarine salinity gradient: Combined influences of bacterial growth and residence time. Applied and Environmental Microbiology 70: 1494–1505.

    Article  CAS  Google Scholar 

  • Eyre, B.D., and A.J.P. Ferguson. 2005. Benthic metabolism and nitrogen cycling in a subtropical east Australian Estuary (Brunswick): Temporal variability and controlling factors. Limnology and Oceanography 50: 81–96.

    Article  CAS  Google Scholar 

  • Focht, D.D., and W. Verstraete. 1977. Biochemical ecology of nitrification and denitrification. Advances in Microbial Ecology 1: 135–214.

  • Francis, C.A., K.J. Roberts, J.M. Beman, A.E. Santoro, and B.B. Oakley. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America 102: 14683–14688.

    Article  CAS  Google Scholar 

  • Galloway, J.N., et al. 2003. The nitrogen cascade. Bioscience 53: 341–356.

    Article  Google Scholar 

  • Henriques, I.S., A. Alves, M. Tacao, A. Almeida, A. Cunha, and A. Correia. 2006. Seasonal and spatial variability of free-living bacterial community composition along an estuarine gradient (Ria de Aveiro, Portugal). Estuarine Coastal and Shelf Science 68: 139–148.

    Article  Google Scholar 

  • Hicks, S. 1959. The physical oceanography of Narragansett Bay. Limnology and Oceanography 4: 316–327.

    Article  Google Scholar 

  • Huesemann, M.H., A.D. Skillman, and E.A. Crecelius. 2002. The inhibition of marine nitrification by ocean disposal of carbon dioxide. Marine Pollution Bulletin 44: 142–148.

    Article  CAS  Google Scholar 

  • Hutchins, D.A., M.R. Mulholland, and F.X. Fu. 2009. Nutrient cycles and marine microbes in a CO2-enriched ocean. Oceanography 22: 128–145.

    Article  Google Scholar 

  • Konneke, M., A.E. Bernhard, J.R. De La Torre, C.B. Walker, J.B. Waterbury, and D.A. Stahl. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543–546.

    Article  Google Scholar 

  • Kremer, J.N., and S.W. Nixon. 1978. A coastal marine ecosystem—simulation and analysis. Berlin: Springer.

    Google Scholar 

  • Lamontagne, M.G., and I. Valiela. 1995. Denitrification measured by a direct N-2 flux method in sediments of Waquoit Bay, MA. Biogeochemistry 31: 63–83.

    Article  CAS  Google Scholar 

  • Lamontagne, M., V. Astorga, A.E. Giblin, and I. Valiela. 2002. Denitrification and the stoichiometry of nutrient regeneration in Waquoit Bay, Massachusetts. Estuaries 25: 272–281.

    Article  CAS  Google Scholar 

  • Magalhaes, C.M., A. Machado, and A.A. Bordalo. 2009. Temporal variability in the abundance of ammonia-oxidizing bacteria vs. archaea in sandy sediments of the Douro River estuary, Portugal. Aquatic Microbial Ecology 56: 13–23.

    Article  Google Scholar 

  • Martens-Habbena, W., P.M. Berube, H. Urakawa, J.R. De La Torre, and D.A. Stahl. 2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461: 976–U234.

    Article  CAS  Google Scholar 

  • Millero, F.J. 2007. The marine inorganic carbon cycle. Chemical Reviews 107(2): 308–341.

    Article  CAS  Google Scholar 

  • Mosier, A.C., and C.A. Francis. 2008. Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environmental Microbiology 10: 3002–3016.

    Article  CAS  Google Scholar 

  • Nixon, S., B. Buckley, S. Granger, and J. Bintz. 2001. Responses of very shallow marine ecosystems to nutrient enrichment. Human and Ecological Risk Assessment 7: 1457–1481.

    Article  Google Scholar 

  • Nixon, S.W., R.W. Fulweiler, B.A. Buckley, S.L. Granger, B.L. Nowicki, and K.M. Henry. 2009. The impact of changing climate on phenology, productivity, and benthic-pelagic coupling in Narragansett Bay. Estuar Coastal and Shelf Science 82: 1–18.

    Article  CAS  Google Scholar 

  • Nowicki, B.L., and A. Gold. 2008. Groundwater nitrogen transport and input along the Narragansett Bay Coastal Margin. In Ecosystem-based estuary management: A case study of Narragansett Bay, ed. A. Desbonnet, A.B. Colt, and B.A. Costa-Pierce. Heidelberg: Springer.

    Google Scholar 

  • Nowicki, B.L., E. Requintina, D. Vankeuren, and J.R. Kelly. 1997. Nitrogen losses through sediment denitrification in Boston Harbor and Massachusetts Bay. Estuaries 20: 626–639.

    Article  CAS  Google Scholar 

  • Oczkowski, A., et al. 2008. Distribution and trophic importance of anthropogenic nitrogen in Narragansett Bay: An assessment using stable isotopes. Estuar Coastal 31: 53–69.

    Article  CAS  Google Scholar 

  • Owens, N.J.P. 1986. Estuarine nitrification - a naturally-occurring fluidized-bed reaction. Estuarine Coastal and Shelf Science 22(1): 31–44.

    Article  CAS  Google Scholar 

  • Pilson, M.E.Q. 1985. On the residence time of water in Narragansett Bay. Estuaries 8: 2–14.

    Article  Google Scholar 

  • Pilson, M. 2008. Narragansett Bay amidst a globally changing climate. In Ecosystem-based estuary management: A case study of Narragansett Bay, ed. A. Desbonnet, A.B. Colt, and B.A. Costa-Pierce. New York: Springer.

    Google Scholar 

  • Portner, H.O. 2008. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Marine Ecology Progress Series 373: 203–217.

    Article  Google Scholar 

  • Przeslawski, R., S. Ahyong, M. Byrne, G. Worheide, and P. Hutchings. 2008. Beyond corals and fish: the effects of climate change on noncoral benthic invertebrates of tropical reefs. Global Change Biology 14: 2773–2795.

    Article  Google Scholar 

  • Sabine, C.L., et al. 2004. The oceanic sink for anthropogenic CO2. Science 305: 367–371.

    Article  CAS  Google Scholar 

  • Santoro, A.E., C.A. Francis, N.R. De Sieyes, and A.B. Boehm. 2008. Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environmental Microbiology 10: 1068–1079.

    Article  CAS  Google Scholar 

  • Seitzinger, S.P., L.P. Nielsen, J. Caffrey, and P.B. Christensen. 1993. Denitrification measurements in aquatic sediments—a comparison of 3 methods. Biogeochemistry 23: 147–167.

    Article  CAS  Google Scholar 

  • Shi, D., Y. Xu, B.M. Hopkinson, and F.M.M. Morel. 2010. Effect of ocean acidification on iron availability to marine phytoplankton. Science 327: 676–679.

    Article  CAS  Google Scholar 

  • Srna, R.F., and A. Baggaley. 1975. Kinetic response of pertubred marine nitrification systems. Journal of Water Pollution Control Fed 47: 412–486.

    Google Scholar 

  • Suzuki, I., U. Dular, and S.C. Kwok. 1974. Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts. Journal of Bacteriology 120: 556–558.

    CAS  Google Scholar 

  • Treusch, A.H., S. Leininger, A. Kletzin, S.C. Schuster, H.P. Klenk, and C. Schleper. 2005. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environmental Microbiology 7: 1985–1995.

    Article  CAS  Google Scholar 

  • Ward, B.B. 1987. Nitrogen transformations in the Southern California Bight. Deep-Sea Research Part a-Oceanographic Research Papers 34: 785–805.

    Article  CAS  Google Scholar 

  • Ward, B.B. 2008. Nitrification in marine systems. In Nitrogen in the marine environment, ed. D.G. Capone, D.A. Bronk, M.R. Mulholland, and E.J. Carpenter. Amsterdam: Elsevier.

    Google Scholar 

  • Yao, H., et al. 2011. Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Applied and Environmental Microbiology 77: 4618–4625.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like thank Scott Nixon for the helpful comments on previous versions of this manuscript and Luke Cole for the map. In addition, we thank the editor who handled this manuscript for their helpful guidance as well as two anonymous reviewers for their thoughtful and insightful comments that much improved this manuscript. There are no conflicts of interest related with any part of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robinson W. Fulweiler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fulweiler, R.W., Emery, H.E., Heiss, E.M. et al. Assessing the Role of pH in Determining Water Column Nitrification Rates in a Coastal System. Estuaries and Coasts 34, 1095–1102 (2011). https://doi.org/10.1007/s12237-011-9432-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-011-9432-4

Keywords

Navigation