Skip to main content
Log in

Ecological Succession in the Honey Bee Gut: Shift in Lactobacillus Strain Dominance During Early Adult Development

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In many vertebrates, social interactions and nutrition can affect the colonization of gut symbionts across generations. In the highly social honey bee, it is unknown to what extent the hive environment and older worker individuals contribute to the generational transmission of core gut bacteria. We used high-throughput sequencing to investigate the effect of nest materials and social contact on the colonization and succession of core hindgut microbiota in workers. With only brief exposure to hive materials following natural eclosion, gut bacterial communities at 3 and 7 days contained phylotypes typically found in the guts of mature adults regardless of treatment. Continuous exposure to nest materials or direct social interactions with mature adults did not affect the diversity or abundance of gut bacterial communities at the scale examined. Similarly, a common pollen supplement fed by beekeepers during pollen dearth had no effect. A consideration of unique OTUs revealed extensive microbial succession independent of treatment. The dominant Lactobacillus strain at 3 days was largely replaced by a different strain at day 7, revealing the colonization signature of a pioneer species. Similar but less pronounced patterns were evident in less abundant OTU’s, many of which may influence community succession via alteration of the gut environment. Our results indicate that the process of bacterial community colonization in the hindgut is resilient to changes in the nutritional, hive, and social environment. Greater taxonomic resolution is needed to accurately resolve questions of ecological succession and typical proportional variation within and between core members of the gut bacterial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Troyer K (1984) Microbes, herbivory and the evolution of social behavior. J Theor Biol 106:157–169. doi:10.1016/0022-5193(84)90016-X

    Article  Google Scholar 

  2. Lombardo MP (2008) Access to mutualistic endosymbiotic microbes : an underappreciated benefit of group living. Behav Ecol Sociobiol 62:479–497. doi:10.1007/s00265-007-0428-9

    Article  Google Scholar 

  3. Gillilland MG, Erb-Downward JR, Bassis CM et al (2012) Ecological succession of bacterial communities during conventionalization of germ-free mice. Appl Environ Microbiol 78:2359–2366. doi:10.1128/AEM.05239-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wall R, Hussey SG, Ryan CA et al (2008) Presence of two Lactobacillus and Bifidobacterium probiotic strains in the neonatal ileum. ISME J 2:83–91. doi:10.1038/ismej.2007.69

    Article  CAS  PubMed  Google Scholar 

  5. Blum JE, Fischer CN, Miles J, Handelsman J (2013) Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster. MBio. doi:10.1128/mBio.00860-13

    PubMed  PubMed Central  Google Scholar 

  6. Powell JE, Martinson VG, Urban-Mead K, Moran NA (2014) Routes of acquisition of the Gut microbiota of the honey Bee Apis mellifera. Appl Environ Microbiol 80:7378–7387. doi:10.1128/AEM.01861-14

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pernice M, Simpson SJ, Ponton F (2014) Towards an integrated understanding of gut microbiota using insects as model systems. J Insect Physiol. doi:10.1016/j.jinsphys.2014.05.016

    PubMed  Google Scholar 

  8. Anderson KE, Sheehan TH, Mott BM et al (2013) Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS One 8:e83125. doi:10.1371/journal.pone.0083125

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moran NA, Hansen AK, Powell JE, Sabree ZL (2012) Distinctive Gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS One 7:e36393. doi:10.1371/journal.pone.0036393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sabree ZL, Hansen AK, Moran NA (2012) Independent studies using deep sequencing resolve the same set of core bacterial species dominating Gut communities of honey bees. PLoS One 7:e41250. doi:10.1371/journal.pone.0041250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Corby-Harris V, Maes P, Anderson KE (2014) The bacterial communities associated with honey Bee (Apis mellifera) foragers. PLoS One 9:e95056. doi:10.1371/journal.pone.0095056

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kwong WK, Moran NA (2015) Evolution of host specialization in gut microbes: the bee gut as a model. Gut Microbes 6:214–220. doi:10.1080/19490976.2015.1047129

    Article  PubMed  PubMed Central  Google Scholar 

  13. Martinson VG, Moy J, Moran NA (2012) Establishment of characteristic gut bacteria during development of the honey bee worker. Appl Environ Microbiol 78:2830–2840. doi:10.1128/AEM.07810-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Engel P, Stepanauskas R, Moran NA (2014) Hidden diversity in honey bee Gut symbionts detected by single-cell genomics. PLoS Genet 10:e1004596. doi:10.1371/journal.pgen.1004596

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ahn J-H, Hong I-P, Bok J-I et al (2012) Pyrosequencing analysis of the bacterial communities in the guts of honey bees Apis cerana and Apis mellifera in Korea. J Microbiol 50:735–45. doi:10.1007/s12275-012-2188-0

    Article  PubMed  Google Scholar 

  16. Martinson VG, Danforth BN, Minckley RL et al (2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 20:619–628. doi:10.1111/j.1365-294X.2010.04959.x

    Article  PubMed  Google Scholar 

  17. Moran NA (2015) Genomics of the honey bee microbiome. Curr Opin Insect Sci 10:22–28. doi:10.1016/j.cois.2015.04.003

    Article  PubMed  Google Scholar 

  18. Evans JD, Spivak M (2010) Socialized medicine: individual and communal disease barriers in honey bees. J Invertebr Pathol 103(Suppl):S62–S72

    Article  PubMed  Google Scholar 

  19. Crailsheim K (1988) Regulation of food passage in the intestine of the honeybee (Apis mellifera L.). J Insect Physiol 34:85–90. doi:10.1016/0022-1910(88)90158-8

    Article  Google Scholar 

  20. Anderson KE, Sheehan TH, Eckholm BJ et al (2011) An emerging paradigm of colony health: microbial balance of the honey bee and hive (Apis mellifera). Insect Soc 58:431–444. doi:10.1007/s00040-011-0194-6

    Article  Google Scholar 

  21. Disayathanoowat T, Young JPW, Helgason T, Chantawannakul P (2011) T-RFLP analysis of bacterial communities in the midguts of Apis mellifera and apis cerana honey bees in Thailand. FEMS Microbiol Ecol 79:273–281. doi:10.1111/j.1574-6941.2011.01216.x

    Article  PubMed  Google Scholar 

  22. Zhang K, Duan H, Karihaloo BL, Wang J (2010) Hierarchical, multilayered cell walls reinforced by recycled silk cocoons enhance the structural integrity of honeybee combs. Proc Natl Acad Sci U S A 107:9502–9506. doi:10.1073/pnas.0912066107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kamakura M (2011) Royalactin induces queen differentiation in honeybees. Nature 473:478–83. doi:10.1038/nature10093

    Article  CAS  PubMed  Google Scholar 

  24. Vojvodic S, Rehan SM, Anderson KE (2013) Microbial Gut diversity of Africanized and European honey Bee larval instars. PLoS One 8:e72106. doi:10.1371/journal.pone.0072106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seeley TD (1982) Adaptive significance of the age polyeithism schedule in honeybee colonies. Behav Ecol Sociobiol 11:287–293

    Article  Google Scholar 

  26. Corby-Harris V, Snyder LA, Schwan MR et al (2014) Origin and effect of alpha 2.2 Acetobacteraceae in honey bee larvae and description of Parasaccharibacter apium gen. nov., sp. nov. Appl Environ Microbiol 80:7460–7472. doi:10.1128/AEM.02043-14

    Article  PubMed  PubMed Central  Google Scholar 

  27. Anderson KE, Carroll MJ, Sheehan TIM, Mott BM (2014) Hive-stored pollen of honey bees: many lines of evidence are consistent with pollen preservation, not nutrient conversion. Mol Ecol. doi:10.1111/mec.12966

    PubMed Central  Google Scholar 

  28. Koch H, Schmid-Hempel P (2011) Bacterial communities in central European bumblebees: low diversity and high specificity. Microb Ecol 62:121–133. doi:10.1007/s00248-011-9854-3

    Article  PubMed  Google Scholar 

  29. Guo J, Wu J, Chen Y et al (2015) Characterization of gut bacteria at different developmental stages of Asian honey bees, Apis cerana. J Invertebr Pathol 127:110–114. doi:10.1016/j.jip.2015.03.010

    Article  PubMed  Google Scholar 

  30. Johnson BR (2010) Division of labor in honeybees: form, function, and proximate mechanisms. Behav Ecol Sociobiol 64:305–316. doi:10.1007/s00265-009-0874-7

    Article  PubMed  PubMed Central  Google Scholar 

  31. Seeley D, Kolmes A (1991) Age polyethism for hive duties in honey bees - illusion or reality? Ethology 87:284–297

    Article  Google Scholar 

  32. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–41. doi:10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–200. doi:10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schliep KP (2011) Phangorn: phylogenetic analysis in R. Bioinformatics 27:592–3. doi:10.1093/bioinformatics/btq706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Paradis E (2010) Pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–20. doi:10.1093/bioinformatics/btp696

    Article  CAS  PubMed  Google Scholar 

  37. Chen J, Bittinger K, Charlson ES et al (2012) Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics 28:2106–13. doi:10.1093/bioinformatics/bts342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Benjamini YHY (1995) Benjamini and Y FDR.pdf. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  39. Gotelli NJ and GLE (2002) EcoSim: null models software for ecology. Version 7.0. Jericho VT, USA

  40. Stone L, Roberts A (1990) The checkerboard score and species distributions. Oecologia 85:74–79. doi:10.1007/BF00317345

    Article  Google Scholar 

  41. Schluter D (1984) A variance test for detecting species associations with some example applications. Ecology 65:998–1005

    Article  Google Scholar 

  42. Schluter J, Foster KR (2012) The evolution of mutualism in Gut microbiota Via host epithelial selection. PLoS Biol. doi:10.1371/journal.pbio.1001424

    PubMed  PubMed Central  Google Scholar 

  43. El Aidy S, Van Den Abbeele P, Van De Wiele T et al (2013) Intestinal colonization: how key microbial players become established in this dynamic process: microbial metabolic activities and the interplay between the host and microbes prospects & overviews S E. Aidy et al. BioEssays 35:913–923. doi:10.1002/bies.201300073

    PubMed  Google Scholar 

  44. Lee FJ, Rusch DB, Stewart FJ et al (2014) Saccharide breakdown and fermentation by the honey bee gut microbiome. Environ Microbiol. doi:10.1111/1462-2920.12526

    Google Scholar 

  45. Bottacini F, Milani C, Turroni F et al (2012) Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect Gut. PLoS One 7:e44229. doi:10.1371/journal.pone.0044229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Anderson KE, Johansson A, Sheehan TH et al (2013) Draft genome sequences of two Bifidobacterium sp. From the honey bee (Apis mellifera). Gut Pathog 5:42. doi:10.1186/1757-4749-5-42

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tarpy DR, Mattila HR, Newton ILG (2015) Characterization of the honey bee microbiome throughout the queen-rearing process. Appl Environ Microbiol. doi:10.1128/AEM.00307-15, AEM.00307–15

    PubMed  PubMed Central  Google Scholar 

  48. Simpson J, Simpson BJ (1955) The significance of the presence of pollen in the food of worker larvae of the honey-bee. Q J Microsc Sci 96:117–120

    CAS  Google Scholar 

  49. Sutherland TD, Campbell PM, Weisman S et al (2006) A highly divergent gene cluster in honey bees encodes a novel silk family a highly divergent gene cluster in honey bees encodes a novel silk family. Genome Res 16:1414–1421. doi:10.1101/gr.5052606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lass A, Crailsheim K (1996) Influence of age and caging upon protein metabolism, hypopharyngeal glands and trophallactic behavior in the honey bee (Apis mellifera L.). Insect Soc 43:347–358. doi:10.1007/BF01258408

    Article  Google Scholar 

  51. Crailsheim K (1998) Trophallactic interactions in the adult honeybee (Apis mellifera L.). Apidologie 29:97–112. doi:10.1051/apido:19980106

    Article  Google Scholar 

  52. Gilliam M (1997) Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiol Lett 155:1–10

    Article  CAS  Google Scholar 

  53. Archie EA, Theis KR (2011) Animal behaviour meets microbial ecology. Anim Behav 82:425–436. doi:10.1016/j.anbehav.2011.05.029

    Article  Google Scholar 

  54. Wang Y, Gilbreath TM, Kukutla P et al (2011) Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One 6:e24767. doi:10.1371/journal.pone.0024767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–63. doi:10.1038/nature12820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Koch H, Cisarovsky G, Schmid-Hempel P (2012) Ecological effects on gut bacterial communities in wild bumblebee colonies. J Anim Ecol 81:1202–1210. doi:10.1111/j.1365-2656.2012.02004.x

    Article  PubMed  Google Scholar 

  57. Babendreier D, Joller D, Romeis J et al (2007) Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol Ecol 59:600–610. doi:10.1111/j.1574-6941.2006.00249.x

    Article  CAS  PubMed  Google Scholar 

  58. Engel P, Martinson VG, Moran NA (2012) Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci U S A 109:1–6. doi:10.1073/pnas.1202970109

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Jay Evans and Randy Oliver for comments on a previous version of the manuscript and the members of the Anderson lab for technical assistance. The corresponding author thanks Belynda Starr, Ariel Calypso, and Isaak Edward for their valuable input. We thank the Bio5 Institute at the University of Arizona Genomics Core for the generation of 454 amplicons. The USDA is an equal opportunity employer and provider.

Author Contributions

PAPR, BMM, and KEA conceived and designed research, PAPR, PM, and KEA performed research, PAPR, VCH, and KEA analyzed data, and KEA wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk E. Anderson.

Additional information

The first authorship is shared between Kirk E. Anderson and Pedro A. P. Rodrigues

Kirk E. Anderson and Pedro A. P. Rodrigues contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, K.E., Rodrigues, P.A.P., Mott, B.M. et al. Ecological Succession in the Honey Bee Gut: Shift in Lactobacillus Strain Dominance During Early Adult Development. Microb Ecol 71, 1008–1019 (2016). https://doi.org/10.1007/s00248-015-0716-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0716-2

Keywords

Navigation