Skip to main content

Advertisement

Log in

An emerging paradigm of colony health: microbial balance of the honey bee and hive (Apis mellifera)

  • Review Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Across the globe, honey bee populations have been declining at an unprecedented rate. Managed honey bees are highly social, frequent a multitude of environmental niches, and continually share food, conditions that promote the transmission of parasites and pathogens. Additionally, commercial honey bees used in agriculture are stressed by crowding and frequent transport, and exposed to a plethora of agricultural chemicals and their associated byproducts. When considering this problem, the hive of the honey bee may be best characterized as an extended organism that not only houses developing young and nutrient rich food stores, but also serves as a niche for symbiotic microbial communities that aid in nutrition and defend against pathogens. The niche requirements and maintenance of beneficial honey bee symbionts are largely unknown, as are the ways in which such communities contribute to honey bee nutrition, immunity, and overall health. In this review, we argue that the honey bee should be viewed as a model system to examine the effect of microbial communities on host nutrition and pathogen defense. A systems view focused on the interaction of the honey bee with its associated microbial community is needed to understand the growing agricultural challenges faced by this economically important organism. The road to sustainable honey bee pollination may eventually require the detoxification of agricultural systems, and in the short term, the integrated management of honey bee microbial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alaux C., Brunet J., Dussaubat C. et al. 2010. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ. Microbiol. 12: 774-782

    Google Scholar 

  • Alippi A.M. and Reynaldi F.J. 2006. Inhibition of the growth of Paenibacillus larvae, the causal agent of American foulbrood of honeybees, by selected strains of aerobic spore-forming bacteria isolated from apiarian sources. J. Invert. Path. 91: 141-146

    Google Scholar 

  • Amdam G.V., Aase A.L., Seehuus S.C., Fondrk K.M., Norberg K. and Hartfelder K. 2005. Social reversal of immunosenescence in honey bee workers. Exp.Gerontol. 40: 939-947

    Google Scholar 

  • Antunez K., Martín-Hernández R., Prieto L., Meana A., Zunino P. and Higes M. 2009. Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ. Microbiol. 11: 2284-2290

    Google Scholar 

  • Audisio M.C., Torres M., Sabate D.C., Ibarguren C. and Apella M.C. 2010. Properties of different lactic acid bacteria isolated from Apis mellifera L. Microbiol. Res. doi:10.1016/j.micres.2010.01.003

  • Babendreier D., Joller D., Romeis J., Bigler F. and Widmer F. 2007. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol. Ecol. 59: 600-610

    Google Scholar 

  • Batra L.R. and Batra S.W.T. 1979. In: Insect- Fungus Symbiosis (Batra L.R., Ed), Allanheld and Osmun, New Jersey, pp 117-163

  • Barton E.S., White D.W., Cathelyn J.S. et al. 2007. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447: 326-330

    Google Scholar 

  • Bedick J.C., Tunaz H., Nor Aliza A.R., Putnam S.M., Ellis M.D. and Stanley D.W. 2001. Eicosanoids act in nodulation reactions to bacterial infections in newly emerged adult honey bees, Apis mellifera, but not in older foragers. Comp. Biochem. Physiol. 130: 107-117

    Google Scholar 

  • Berg R.D. 1996. The indigenous gastrointestinal microflora. Trends Microbiol. 4: 430-435

    Google Scholar 

  • Berger B., Pridmore R.D., Barretto C. et al. 2007. Similarity and differences in the Lactobacillus acidophilus group identified by polyphasic analysis and comparative genomics. J. Bacteriol. 189: 1311-1321

    Google Scholar 

  • Bilikova K., Gusui W. and Simuth J. 2001. Isolation of a peptide fraction from honeybee royal jelly as a potential antifoulbrood factor. Apidologie 32: 275-283

    Google Scholar 

  • Cano R.J., Borucki M.K., Higby-Schweitzer M., Poinar H.N., Poinar Jr. G.O. and Pollard K.J. 1994. Bacillus DNA in fossil bees: an ancient symbiosis? Appl. Environ. Microbiol. 60: 2164-2167

  • Chan Q.W. and Foster L.J. 2008. Changes in protein expression during honey bee larval development. Genome Biol. doi:10.1186/gb-2008-9-10-r156.

  • Charbonneau R., Gosselin P. and Thibault C. 1992. Irradiation and American foulbrood. Am Bee J. 132: 249-251

    Google Scholar 

  • Chen Y., Pettis J.S. and Feldlaufer M.F. 2005. Detection of multiple viruses in queens of the honey bee Apis mellifera L. J. Invert. Pathol. 90: 118-121

    Google Scholar 

  • Chen Y.P. and Siede R. 2007. Honey bee viruses. Adv. Virus. Res. 70: 33-80

    Google Scholar 

  • Chenoweth M.R., Somerville G.A., Krause D.C., O’Reilly K.L. and Gherardini F.C. 2004. Growth characteristics of Bartonella henselae in a novel liquid medium: primary isolation, growth-phase-dependent phage induction, and metabolic studies. Appl. Environ. Microbiol. 70: 656-663

    Google Scholar 

  • Cox-Foster D.L., Conlan S., Holmes E.C. et al. 2007. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318: 283-287

    Google Scholar 

  • Crailsheim K. 1998. Trophallactic interactions in the adult honey bee (Apis mellifera L.). Apidologie 29: 97-112

    Google Scholar 

  • Crailsheim K., Schneider L.H.W., Hrassnigg N. et al. 1992. Pollen consumption and utilization in worker honey bees: dependence on individual age and function. J. Insect Physiol. 38: 409-419

    Google Scholar 

  • Currie C.R, Scott J.A., Summerbell R.C. and Malloch D. 1999. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398: 701-704

    Google Scholar 

  • Currie C.R., Poulsen M., Mendenhall J., Boomsma J.J. and Billen J. 2006. Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 311: 81-83

    Google Scholar 

  • Dillon R.J. and Dillon V.M. 2004. The gut bacteria of insects: Nonpathogenic interactions. Annu. Rev. Entomol. 49: 71-92

    Google Scholar 

  • Dillon R. and Charnley K. 2002. Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res. Microbiol. 153: 503-509

    Google Scholar 

  • Douglas A.E. 1998. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43: 17-37

    Google Scholar 

  • Egorova A. 1971. Preservative microflora in stored pollen. Vet. 8: 40-41

    Google Scholar 

  • Evans J.D. and Pettis J.S. 2005. Colony-level effects of immune responsiveness in honey bees, Apis mellifera. Evolution 59: 2270-2274

    Google Scholar 

  • Evans J.D. and Armstrong T.N. 2006. Antagonistic interactions between honey bee bacterial symbionts and implications for disease. BMC Ecol. 6: 4-12

    Google Scholar 

  • Evans J.D. 2006. Bee path: an ordered quantitative-pcr array for honey bee immunity and disease. J. Invert. Pathol. 93: 135-139

    Google Scholar 

  • Evans J.D., Aronstein K., Chen Y.P. et al. 2006. Immune pathways and defense mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 15: 645-656

    Google Scholar 

  • Evans J.D. and Spivak M. 2010. Socialized medicine: individual and communal disease barriers in honey bees. J. Invert. Pathol. 103: S62-S72

    Google Scholar 

  • F.A.O. 2009. ProdSTAT Database. Food and Agriculture Organization of the United Nations. http://faostat.fao.org/default.aspx Accessed 25 July 2010

  • Feigenbaum C. and Naug D. 2010. The influence of social hunger on food distribution and its implications for disease transmission in a honeybee colony. Insect. Soc. 57: 217-222

    Google Scholar 

  • Feldhaar H. and Gross R. 2009. Insects as hosts for mutualistic bacteria. Int. J. Med. Microbiol. 299: 1-8

    Google Scholar 

  • Fontana R., Mendes M.A., De Souza B.M. and Konno K. 2004. Jelleines: a family of antimacrobial peptides from the royal jelly of honeybees (Apis mellifera). Peptides 25: 919-928

    Google Scholar 

  • Forsgren E., Olofsson T.C., Vasquez A. and Fries I. 2010. Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41: 99-108

    Google Scholar 

  • Foote H.L. 1957. Possible use of microorganisms in synthetic bee bread production. Am. Bee J. 97: 476-478

    Google Scholar 

  • Fraser-Liggett C.M. 2005. Insights on biology and evolution from microbial genome sequencing. Genome Res. 15: 1603-1610

    Google Scholar 

  • Free B. 1957. The transmission of food between worker honeybees. Br. J. Anim. Behav. 5: 41-47

    Google Scholar 

  • Genersch E. and Aubert M. 2010. Emerging and re-emerging viruses of the honey bee (Apis mellifera L.) Vet. Res. 41: 54

    Google Scholar 

  • Genersch E., Evans J.D. and Fries I. 2010. Honey bee disease overview. J. Invert. Pathol. 103: S2-S4

    Google Scholar 

  • Gerardo N.M., Altincicek B., Anselme C. et al. 2010. Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biology 11: R21 http://genomebiology.com/2010/11/2/R21.

  • Gibson C.M. and Hunter M.S. 2010. Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol. Lett. 13: 223-234

    Google Scholar 

  • Gill S.R., Pop M., DeBoy R.T. et al. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312: 1355-1359

    Google Scholar 

  • Gilliam M. 1971. Microbial sterility of the intestinal content of the immature honey bee, Apis mellifera. Ann. Entomol. Soc. Am. 64: 315-316

    Google Scholar 

  • Gilliam M., Wickerham L.J., Morton H.L. and Martin R.D. 1974. Yeasts isolated from honey bees, Apis mellifera, fed 2,4-D and antibiotics. J. Invert. Path. 24: 349-356

    Google Scholar 

  • Gilliam M. 1979a. Microbiology of pollen and bee bread: The yeasts. Apidologie 10: 43-53

    Google Scholar 

  • Gilliam M. 1979b. Microbiology of pollen and bee bread: The genus Bacillus. Apidologie 10: 269-274

    Google Scholar 

  • Gilliam M., Moffett J.O. and Kauffeld N.M. 1983. Examination of floral nectar of citrus, cotton, and Arizona desert plants for microbes. Apidologie 14: 299-302

    Google Scholar 

  • Gilliam M. and Prest D.B. 1987. Microbiology of the feces of the larval honey bee, Apis mellifera. J. Invert. Pathol. 49: 70-75

    Google Scholar 

  • Gilliam M., Taber III S., Lorenz B.J. and Prest D.B. 1988. Factors affecting development of chalkbrood disease in colonies of honey bees, Apis mellifera, fed pollen contaminated with Ascosphaera apis. J. Invert. Pathol. 52: 314-325

  • Gilliam M., Prest D.B. and Lorenz B.J. 1989. Microbiology of pollen and bee bread: taxonomy and enzymology of molds. Apidologie 20: 53-68

    Google Scholar 

  • Gilliam M. 1997. Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiol. Lett. 155: 1-10

    Google Scholar 

  • Hamdi C., Balloi A., Essanaa J. et al. 2011. Gut microbiome dysbiosis and honeybee health. J. Appl. Entomol. doi:10.1111/j.1439-0418.2010.01609.x

  • Handelsman J., Rondon M.R., Brady S.F., Clardy J. and Goodman R.M. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5: 245-249

    Google Scholar 

  • Haydak M.H. 1958. Pollen and pollen substitutes; bee bread. Am. Bee J. 98: 145-146

    Google Scholar 

  • Herrera C.M., de Vega C., Canto A. and Pozo M.I. 2009. Yeasts in floral nectar: a quantitative survey. Ann. Bot. doi:10.1093/aob/mcp026

  • Hughes D.P., Pierce N.E. and Boomsma J.J. 2008. Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol. Evol. 23: 672-677

    Google Scholar 

  • Human H. and Nicolson S.W. 2006. Nutritional content of fresh, bee-collected and stored pollen of Aloe greatheadii var. davyana (Asphodelaceae). Phytochem. 67: 1486-1492

  • Hunt G. J., Page R.E., Fondrk M.K. and Dullum C.J. 1995. Major quantitative trait loci affecting honey bee foraging behavior. Genetics 141: 1537-1545

    Google Scholar 

  • Huson D.H., Richter D.C., Mitra S., Auch A.F. and Schuster S.C. 2009. Methods for comparative metagenomics. BMC Bioinformatics doi:10.1186/1471-2105-10-S1-S12

  • Ishikawa H. 2003. Insect symbiosis: An introduction. In: Insect Symbiosis (Bourtzis K. and Miller T.A., Eds), CRC press, Boca Raton FL, USA. pp 1-21

  • Jeyaprakash A., Hoy M.A. and Allsopp M.H. 2003. Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using16S rRNA sequences. J. Invert. Pathol. 84: 96-103

    Google Scholar 

  • Johnson R.M., Evans J.D., Robinson G.E. and Berenbaum M.R. 2009. Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera). Proc. Natl Acad. Sci. USA 106: 14790-14795

    Google Scholar 

  • Jolles P. and Jolles J. 1984. What’s new lysozyme research? Mol. Cell Biochem. 63: 165-189

    Google Scholar 

  • Kachaniova M., Chlebo R., Kopernicky M. and Trakovicka A. 2004. Microflora of the honeybee gastrointestinal tract. Folia Microbiol. 49: 169-171

    Google Scholar 

  • Katz E. and Demain A.L. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol. Rev. 41: 449-474

    Google Scholar 

  • Kikuchi Y. 2009. Endosymbiotic bacteria in insects: their diversity and culturability. Microbes Environ. 24: 195-204

    Google Scholar 

  • Klungness L.M. and Peng Y. 1984. A histochemical study of pollen digestion in the alimentary canal of honeybees (Apis mellifera L.) J. Insect Physiol. 30: 51 I-521

    Google Scholar 

  • Korst P.J.A.M. and Velthuis H.H.W. 1982. The nature of trophallaxis in honey bees. Insect. Soc. 29: 209-221

    Google Scholar 

  • Kroon G.H., van Praagh J.P. and Velthuis H.H.W. 1974. Osmotic shock as a prerequisite to pollen digestion in the alimentary tract of the worker honeybee. J. Apicult. Res. 13: 177-181

    Google Scholar 

  • Kubo T., Sasaki M., Nakamura J. et al. 1996. Change in the expression of hypopharyngeal-gland proteins of the worker honeybees (Apis mellifera L.) with age and/or role. J. Biochem. 119: 291-295

    Google Scholar 

  • Kuhnholz S. and Seeley T.D. 1997. The control of water collection in honey bee colonies. Behav. Ecol. Sociobiol. 41: 407-422

    Google Scholar 

  • Kujumgiev A., Tsvetkova I., Serkedjieva Y., Bankova V., Christov R. and Popov S. 1999. Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J. Ethnopharmacol. 64: 235-240

    Google Scholar 

  • Kunieda T, Fujiyuki T., Kucharski R. et al. 2006. Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome. Insect Mol. Biol. 15: 563-576

    Google Scholar 

  • Lemos E.G., Alves L.M.C. and Campanharo J.C. 2003. Genomics-based design of defined growth media for the plant pathogen Xylella fastidiosa. FEMS Microbiol. Lett. 219: 39-45

    Google Scholar 

  • Little A.E.F., Murakami T., Mueller U.G. and Currie C.R. 2006. Defending against parasites: fungus-growing ants combine specialized behaviors and microbial symbionts to protect their fungus gardens. Biol. Lett. 2: 12-16

    Google Scholar 

  • Little A.E.F. and Currie C.R. 2008. Black yeast symboints compromise the efficiency of antibiotic defenses in fungus growing ant. Ecology 89: 1216-1222

    Google Scholar 

  • Maddrell S.H.P. and Gardiner B.O.C. 1980. The permeability of the cuticular lining of the insect alimentary canal. J. Exp. Biol. 85: 227-237

    Google Scholar 

  • Martinson V.G., Danforth B.N., Minckley R.L., Rueppell O., Tingek S. and Moran N. 2011. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20: 619-628

    Google Scholar 

  • McSweeney P.L.H. 2004. Biochemistry of cheese ripening. Int. J. Dairy Technol. 57: 127-144

    Google Scholar 

  • Meyer W. 1956. Propolis bees and their activities. Bee World 37: 25-36

    Google Scholar 

  • Millet V. and Lonvaud-Funel A. 2000. The viable but non-culturable state of wine micro-organisms during storage. Lett. Appl. Microbiol. 30: 136-141

    Google Scholar 

  • Mitsuoka T. 1992. The human intestinal tract. In: The Lactic Acid Bacteria: Volume I, The Lactic Acid Bacteria in Health and Disease (Wood B.J.B., Ed), Elsevier Science Publishers, Ltd., Essex, England, pp 69-114

  • Moran N.A. and Telang A. 1998. Bacteriocyte-associated symbionts of insects-a variety of insect groups harbor ancient prokaryotic endosymbionts. Bioscience 48: 295-304

    Google Scholar 

  • Moran N.A., Degnan P.H., Santos S.R., Dunbar H.E. and Ochman H. 2005. The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proc. Natl Acad. Sci. USA 102: 16919-16926

    Google Scholar 

  • Morgan J.L., Darling A.E. and Eisen J.A. 2010. Metagenomic sequencing of an in vitro-simulated microbial community. PLoS ONE doi:10.1371/journal.pone.0010209

  • Mohr K.I. and Tebbe C.C. 2006. Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ. Microbiol. 8:258-272

    Google Scholar 

  • Mrazek J., Strosova L., Fliegerova K., Kott T. and Kopecny J. 2008. Diversity of insect intestinal microflora. Folia Microbiol. 53: 229-233

    Google Scholar 

  • Mullin C.A., Frazier M., Frazier J.L. et al. 2010. High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE doi:10.1371/journal.pone.0009754

  • Oldroyd B.P. 2007. What’s killing American honey nees? PLoS Biol. doi:10.1371/journal.pbio.0050168

  • Olofsson T.C. and Vasquez A. 2008. Detection and identification of a novel lactic acid bacterial flora within the honeybee Apis mellifera. Curr. Microbiol. 57: 356-363

    Google Scholar 

  • Ohashi K., Sawata M., Takeuchi H., Natori S. and Kubo T. 1996. Molecular cloning of cDNA and analysis of expression of the gene for alpha-glucosidase from the hypopharyngeal gland of the honeybee Apis mellifera L. Biochem. Biophys. Res. Commun. 221: 380-385

    Google Scholar 

  • Ohashi K., Natori S. and Kubo T. 1997. Change in the mode of gene expression of the hypopharyngeal gland cells with an age-dependent role change of the worker honeybee Apis mellifera L. Eur. J. Biochem. 249: 797-802

    Google Scholar 

  • Pacinia E. and Hesse M. 2005. Pollenkitt - its composition, forms and functions Flora 200: 399-415

    Google Scholar 

  • Promnuan Y., Kudo T. and Chantawannakul P. 2009. Actinomycetes isolated from beehives in Thailand. World J. Microbiol. Biotechnol. 25: 1685-1689

    Google Scholar 

  • Rada V., Machova M., Achovahuk J., Marounek M. and Duskova D. 1997. Microflora in the honeybee digestive tract: counts, characteristics and sensitivity to veterinary drugs. Apidologie 28: 357-365

    Google Scholar 

  • Ribiere M., Oliver V., Blanchard P. et al. 2008. The collapse of bee colonies: The CCD case (Colony collapse disorder) and the IAPV virus (Israeli acute paralysis virus). Virologie 12: 319-322

    Google Scholar 

  • Romanelli A, Moggio L., Montella R.C. et al. 2011. Peptides from royal jelly: studies on the antimicrobial activity of jelleins, jelleins analogs and synergy with temporins. J. Pept. Sci. 17: 348-352

    Google Scholar 

  • Rouland-Lefèvre C, Inoue T. and Johjima T. 2006. Termitomyces/termite interactions. In: Intestinal Microorganisms of Soil Invertebrates (Konig H. and Varma A., Eds), Springer-Verlag, New-York, pp 335-350

  • Ruiz-Argueso T. and Rodriguez-Navarro A. 1975. Microbiology of ripening honey. Appl. Microbiol. 30: 893-896

    Google Scholar 

  • Runckel C., Flenniken M.L., Engel J.C. et al. 2011. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS ONE doi:10.1371/journal.pone.0020656

  • Russell J.A., Moreau C.S., Goldman-Huertas B., Fujiwara M., Lohman D.J. and Pierce N.E. 2009. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc. Natl. Acad. Sci. USA 106: 21236-21241

    Google Scholar 

  • Sandhu D.K. and Waraich M.K. 1985. Yeasts associated with pollinating bees and flower nectar. Microb. Ecol. 11: 51-58

    Google Scholar 

  • Sauer K, Camper A.K., Ehrlich G.D., Costerton J.W. and Davies D.G. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184: 1140-1154

    Google Scholar 

  • Scarborough C.L., Ferrari J. and Godfray H.C. 2005. Aphid protected from pathogen by endosymbiont. Science 310: 1781

    Google Scholar 

  • Schmid-Hempel P. 2005. Evolutionary ecology of insect immune defenses. Annu. Rev. Entomol. 50: 529-551

    Google Scholar 

  • Seeley T.D. 1995. The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies. Cambridge, MA: Harvard University Press

  • Shapiro O.H., Kushmaro A. and Brenner A. 2010. Bacteriophage predation regulates microbial abundance and diversity in a full-scale bioreactor treating industrial wastewater. Int. Soc. Microb. Ecol. 4: 327-336

    Google Scholar 

  • Shimizu-Kadota M., Sakurai T. and Tsuchida N. 1983. Prophage origin of a virulent phage appearing on fermentations of Lactobacillus casei S-1. 45: 669-674

  • Simon C. and Rolf D. 2009. Achievements and new knowledge unraveled by metagenomic approaches. Appl. Microbiol. Biotechnol. 85 :265-276

    Google Scholar 

  • Simone M., Evans J.D. and Spivak M. 2009. Resin collection and social immunity in honey bees. Evolution 63: 3016-3022

    Google Scholar 

  • Strand M.R. 2008. The insect cellular immune response. Insect Science 15: 1-14

    Google Scholar 

  • Tanada Y. and Kaya H.K. 1993. Insect Pathology. Academic Press, San Diego

  • Takayuki U., Nakaoka T., Takeuchi H. and Kubo T. 2009. Differential gene expression in the hypopharyngeal glands of worker honeybees (Apis mellifera L.) associated with an age-dependent role change. Zool. Sci. 26: 557-563

    Google Scholar 

  • Terra W.R. and Ferreira C. 1994. Insect digestive enzymes: properties, compartmentalization and function. Comp. Biochem. Physiol. 109B: 1-62

    Google Scholar 

  • Turner J.S. 2000. The Extended Organism. The Physiology of Animal-Built Structures. Harvard University Press, Cambridge, MA

  • Turner J.S. 2004. Extended phenotypes and extended organisms. Biol. Philos. 19: 327-352

    Google Scholar 

  • Tyson G.W. and Banfield J.F. 2005. Cultivating the uncultivated: A community genomics perspective. Trends Microbiol. 13: 411-415

    Google Scholar 

  • van Engelsdorp D. and Meixner M.D. 2009. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invert. Pathol. 103: S80-S95

    Google Scholar 

  • Watanabe M.E. 2008. Colony collapse disorder: Many suspects, no smoking gun. BioSci. 5: 384-388

    Google Scholar 

  • Winston M.L. 1987. The Biology of the Honey Bee. Harvard University Press, Cambridge, MA

  • Zilber-Rosenberg I. and Rosenberg E. 2008. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev. 32: 723-735

    Google Scholar 

Download references

Acknowledgments

We thank Jay Evans, Timothy Linksvayer, Scott Turner and Michiel Dijkstra for suggestions that improved the manuscript. This work is dedicated to Martha Gilliam, who devoted her career to the characterization of honey bee associated microbes. The USDA/ARS is an equal opportunity employer and provider.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, K.E., Sheehan, T.H., Eckholm, B.J. et al. An emerging paradigm of colony health: microbial balance of the honey bee and hive (Apis mellifera). Insect. Soc. 58, 431–444 (2011). https://doi.org/10.1007/s00040-011-0194-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-011-0194-6

Keywords

Navigation