Skip to main content
Log in

Comparative Analysis of the Intestinal Bacterial Communities in Different Species of Carp by Pyrosequencing

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Gut microbiota is increasingly regarded as an integral component of the host, due to important roles in the modulation of the immune system, the proliferation of the intestinal epithelium and the regulation of the dietary energy intake. Understanding the factors that influence the composition of these microbial communities is essential to health management, and the application to aquatic animals still requires basic investigation. In this study, we compared the bacterial communities harboured in the intestines and in the rearing water of grass carp (Ctenopharyngodon idellus), crucian carp (Carassius cuvieri), and bighead carp (Hypophthalmichthys nobilis), by using 454-pyrosequencing with barcoded primers targeting the V4 to V5 regions of the bacterial 16S rRNA gene. The specimens of the three species were cohabiting in the same pond. Between 6,218 and 10,220 effective sequences were read from each sample, resulting in a total of 110,398 sequences for 13 samples from gut microbiota and pond water. In general, the microbial communities of the three carps were dominated by Fusobacteria, Firmicutes, Proteobacteria and Bacteroidetes, but the abundance of each phylum was significantly different between species. At the genus level, the overwhelming group was Cetobacterium (97.29 ± 0.46 %) in crucian carp, while its abundance averaged c. 40 and 60 % of the sequences read in the other two species. There was higher microbial diversity in the gut of filter-feeding bighead carp than the gut of the two other species, with grazing feeding habits. The composition of intestine microbiota of grass carp and crucian carp shared higher similarity when compared with bighead carp. The principal coordinates analysis (PCoA) with the weighted UniFrac distance and the heatmap analysis suggested that gut microbiota was not a simple reflection of the microbial community in the local habitat but resulted from species-specific selective pressures, possibly dependent on behavioural, immune and metabolic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Walter J, Britton RA, Roos S (2011) Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm. Proc Natl Acad Sci U S A 108:4645–4652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6:776–788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131

    Article  CAS  PubMed  Google Scholar 

  4. Sugita H, Miyajima C, Deguchi Y (1991) The vitamin B12-producing ability of the intestinal microflora of freshwater fish. Aquaculture 92:267–276

    Article  CAS  Google Scholar 

  5. Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF (2011) Evidence for a core gut microbiota in the zebrafish. ISME J 5:1595–1608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Wu S, Gao T, Zheng Y, Wang W, Cheng Y, Wang G (2010) Microbial diversity of intestinal contents and mucus in yellow catfish (Pelteobagrus fulvidraco). Aquaculture 303:1–7

    Article  CAS  Google Scholar 

  7. Nayak SK (2010) Role of gastrointestinal microbiota in fish. Aquac Res 41:1553–1573

    Article  Google Scholar 

  8. Sullam KE, Essinger SD, Lozupone CA, O’CONNOR MP, Rosen GL, Knight R, Kilham SS, Russell JA (2012) Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol 21:3363–3378

    Article  PubMed  Google Scholar 

  9. Greetham H, Giffard C, Hutson R, Collins M, Gibson G (2002) Bacteriology of the Labrador dog gut: a cultural and genotypic approach. J Appl Microbiol 93:640–646

    Article  CAS  PubMed  Google Scholar 

  10. Kim DH, Brunt J, Austin B (2007) Microbial diversity of intestinal contents and mucus in rainbow trout (Oncorhynchus mykiss). J Appl Microbiol 102:1654–1664

    Article  CAS  PubMed  Google Scholar 

  11. Spanggaard B, Huber I, Nielsen J, Nielsen T, Appel K, Gram L (2000) The microflora of rainbow trout intestine: a comparison of traditional and molecular identification. Aquaculture 182:1–15

    Article  CAS  Google Scholar 

  12. Wu S, Wang G, Angert ER, Wang W, Li W, Zou H (2012) Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS One 7:e30440. doi:10.1371/journal.pone.0030440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Navarrete P, Magne F, Araneda C, Fuentes P, Barros L, Opazo R, Espejo R, Romero J (2012) PCR-TTGE analysis of 16S rRNA from rainbow trout (Oncorhynchus mykiss) gut microbiota reveals host-specific communities of active bacteria. PLoS One 7:e31335. doi:10.1371/journal.pone.0031335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Li X, Yu Y, Feng W, Yan Q, Gong Y (2012) Host species as a strong determinant of the intestinal microbiota of fish larvae. J Microbiol 50:29–37

    Article  CAS  PubMed  Google Scholar 

  15. Cardenas E, Tiedje JM (2008) New tools for discovering and characterizing microbial diversity. Curr Opin Biotechnol 19:544–549

    Article  CAS  PubMed  Google Scholar 

  16. Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R (2008) Error-correcting barcoded primers allow hundreds of samples to be pyrosequenced in multiplex. Nat Methods 5:235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Nam Y-D, Jung M-J, Roh SW, Kim M-S, Bae J-W (2011) Comparative analysis of Korean human gut microbiota by barcoded pyrosequencing. PLoS One 6:e22109. doi:10.1371/journal.pone.0022109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Ravussin Y, Koren O, Spor A, LeDuc C, Gutman R, Stombaugh J, Knight R, Ley RE, Leibel RL (2012) Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity 20:738–747

    Article  CAS  PubMed  Google Scholar 

  19. Wong S, Waldrop T, Summerfelt S, Davidson J, Barrows F, Kenney PB, Welch T, Wiens GD, Snekvik K, Rawls JF (2013) Aquacultured rainbow trout (Oncorhynchus mykiss) possess a large core intestinal microbiota that is resistant to variation in diet and rearing density. Appl Environ Microbiol 79:4974–4984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. MoA BoF (2011) China fisheries statistical yearbook 2011. China Agriculture Press, Beijing

    Google Scholar 

  21. BillaRd R, BeRni P (2004) Trends in cyprinid polyculture. Cybium 28:255–261

    Google Scholar 

  22. Ringø E, Sperstad S, Myklebust R, Refstie S, Krogdahl Å (2006) Characterisation of the microbiota associated with intestine of Atlantic cod (Gadus morhua L.): the effect of fish meal, standard soybean meal and a bioprocessed soybean meal. Aquaculture 261:829–841

    Article  Google Scholar 

  23. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516–4522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Liu Z, Lozupone C, Hamady M, Bushman FD, Knight R (2007) Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res 35:e120

    Article  PubMed Central  PubMed  Google Scholar 

  25. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Schloss PD (2009) A high-throughput DNA sequence aligner for microbial ecology studies. PLoS One 4:e8230

    Article  PubMed Central  PubMed  Google Scholar 

  27. Gaspar JM, Thomas WK (2013) Assessing the consequences of denoising marker-based metagenomic data. PLoS One 8:e60458. doi:10.1371/journal.pone.0060458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Claesson MJ, O'Sullivan O, Wang Q, Nikkilä J, Marchesi JR, Smidt H, de Vos WM, Ross RP, O'Toole PW (2009) Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One 4:e6669. doi:10.1371/journal.pone.0006669

    Article  PubMed Central  PubMed  Google Scholar 

  30. Lozupone C, Hamady M, Knight R (2006) UniFrac–an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinforma 7:371. doi:10.1186/1471-2105-7-371

    Article  Google Scholar 

  31. Kemp PF, Aller JY (2004) Estimating prokaryotic diversity: when are 16S rDNA libraries large enough? Limnol Oceanogr Methods 2:114–125

    Article  Google Scholar 

  32. Stackebrandt E, Goebel B (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  33. Piao Z, Yang L, Zhao L, Yin S (2008) Actinobacterial community structure in soils receiving long-term organic and inorganic amendments. Appl Environ Microbiol 74:526–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Sekirov I, Russell SL, Antunes LCM, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904

    Article  CAS  PubMed  Google Scholar 

  36. Gatesoupe FJ, Covès D, Ortega A, Papandroulakis N, Vadstein O, Gándara F (2013) A spatiotemporal study of bacterial community profiles associated with Atlantic bluefin tuna larvae, Thunnus thynnus L., in three Mediterranean hatcheries. Aquac Res 44:1511–1523

    Article  CAS  Google Scholar 

  37. Larsen AM, Mohammed HH, Arias CR (2014) Characterization of the gut microbiota of three commercially valuable warmwater fish species. J Appl Microbiol 116:1396–1404

    Article  CAS  PubMed  Google Scholar 

  38. Ye L, Amberg J, Chapman D, Gaikowski M, Liu W-T (2013) Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. ISME J 8:541–551

    Article  PubMed  Google Scholar 

  39. van Kessel MA, Dutilh BE, Neveling K, Kwint MP, Veltman JA, Flik G, Jetten MS, Klaren PH, den Camp HJO (2011) Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.). AMB Express 1:1–9. doi:10.1186/2191-0855-1-41

    Article  Google Scholar 

  40. Finegold SM, Vaisanen M-L, Molitoris DR, Tomzynski TJ, Song Y, Liu C, Collins MD, Lawson PA (2003) Cetobacterium somerae sp. nov. from human feces and emended description of the genus Cetobacterium. Syst Appl Microbiol 26:177–181

    Article  PubMed  Google Scholar 

  41. Ni J, Yu Y, Zhang T, Gao L (2012) Comparison of intestinal bacterial communities in grass carp, Ctenopharyngodon idellus, from two different habitats. Chin J Oceanol Limnol 30:757–765

    Article  Google Scholar 

  42. Zhou, Z., He, S., Liu, Y., Shi, P., Yao, B., Ringø, E. (2012). Do stocking densities affect the gut microbiota of gibel carp Carassius auratus gibelio cultured in ponds? J Aquacult Res Development 3. doi:10.4172/2155-9546.S1-003

  43. Dominika Ś, Arjan N, Karyn RP, Henryk K (2011) The study on the impact of glycated pea proteins on human intestinal bacteria. Int J Food Microbiol 145:267–272

    Article  CAS  PubMed  Google Scholar 

  44. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696

    Article  PubMed Central  PubMed  Google Scholar 

  45. Uffen R (1997) Xylan degradation: a glimpse at microbial diversity. J Ind Microbiol Biotechnol 19:1–6

    Article  CAS  Google Scholar 

  46. Uz I, Ogram AV (2006) Cellulolytic and fermentative guilds in eutrophic soils of the Florida Everglades. FEMS Microbiol Ecol 57:396–408

    Article  CAS  PubMed  Google Scholar 

  47. Schwab C, Cristescu B, Northrup JM, Stenhouse GB, Gänzle M (2011) Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears. PLoS One 6:e27905. doi:10.1371/journal.pone.0027905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Lubbs D, Vester B, Fastinger N, Swanson K (2009) Dietary protein concentration affects intestinal microbiota of adult cats: a study using DGGE and qPCR to evaluate differences in microbial populations in the feline gastrointestinal tract. J Anim Physiol Anim Nutr 93:113–121

    Article  CAS  Google Scholar 

  49. Pikuta EV, Hoover RB, Marsic D, Whitman WB, Lupa B, Tang J, Krader P (2009) Proteocatella sphenisci gen. nov., sp. nov., a psychrotolerant, spore-forming anaerobe isolated from penguin guano. Int J Syst Evol Microbiol 59:2302–2307

    Article  CAS  PubMed  Google Scholar 

  50. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64:655–671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Tetlock A, Yost CK, Stavrinides J, Manzon RG (2012) Changes in the gut microbiome of the sea lamprey during metamorphosis. Appl Environ Microbiol 78:7638–7644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Pond MJ, Stone DM, Alderman DJ (2006) Comparison of conventional and molecular techniques to investigate the intestinal microflora of rainbow trout (Oncorhynchus mykiss). Aquaculture 261:194–203

    Article  CAS  Google Scholar 

  53. Namba A, Mano N, Hirose H (2007) Phylogenetic analysis of intestinal bacteria and their adhesive capability in relation to the intestinal mucus of carp. J Appl Microbiol 102:1307–1317

    Article  CAS  PubMed  Google Scholar 

  54. Ringø E, Olsen RE, Mayhew TM, Myklebust R (2003) Electron microscopy of the intestinal microflora of fish. Aquaculture 227:395–415

    Article  Google Scholar 

  55. Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9:279–290

    Article  CAS  PubMed  Google Scholar 

  56. Petnicki-Ocwieja T, Hrncir T, Liu Y-J, Biswas A, Hudcovic T, Tlaskalova-Hogenova H, Kobayashi KS (2009) Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci U S A 106:15813–15818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Palma G, Capilla A, Nadal I, Nova E, Pozo T, Varea V, Polanco I, Castillejo G, López A, Garrote JA (2010) Interplay between human leukocyte antigen genes and the microbial colonization process of the newborn intestine. Curr Issues Mol Biol 12:1–10

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Science and Technology Pillar Programmes (grants no. 2011BAI15B01-41), FEBL project (2011FBZ26) and the Natural Science Foundation of China (no. 30670112 and 31070112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aihua Li.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 346 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Long, M., Gatesoupe, FJ. et al. Comparative Analysis of the Intestinal Bacterial Communities in Different Species of Carp by Pyrosequencing. Microb Ecol 69, 25–36 (2015). https://doi.org/10.1007/s00248-014-0480-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0480-8

Keywords

Navigation