Skip to main content
Log in

Presence and Diversity of Streptomyces in Dendroctonus and Sympatric Bark Beetle Galleries Across North America

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Recent studies have revealed several examples of intimate associations between insects and Actinobacteria, including the Southern Pine Beetle Dendroctonus frontalis and the Spruce Beetle Dendroctonus rufipennis. Here, we surveyed Streptomyces Actinobacteria co-occurring with 10 species of Dendroctonus bark beetles across the United States, using both phylogenetic and community ecology approaches. From these 10 species, and 19 other scolytine beetles that occur in the same trees, we obtained 154 Streptomyces-like isolates and generated 16S sequences from 134 of those. Confirmed 16S sequences of Streptomyces were binned into 36 distinct strains using a threshold of 0.2% sequence divergence. The 16S rDNA phylogeny of all isolates does not correlate with the distribution of strains among beetle species, localities, or parts of the beetles or their galleries. However, we identified three Streptomyces strains occurring repeatedly on Dendroctonus beetles and in their galleries. Identity of these isolates was corroborated using a house-keeping gene sequence (efTu). These strains are not confined to a certain species of beetle, locality, or part of the beetle or their galleries. However, their role as residents in the woodboring insect niche is supported by the repeated association of their 16S and efTu from across the continent, and also having been reported in studies of other subcortical insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Alam MT, Merlo ME, Takano E, Breitling R (2010) Genome-based phylogenetic analysis of Streptomyces and its relatives. Mol Phylogenet Evol 54:763

    Article  PubMed  CAS  Google Scholar 

  2. Currie CR, Scott JA, Summerbell RC, Malloch D (1999) Fungus-growing ants use antibiotic producing bacteria to control garden parasites. Nature 398:701–704

    Article  CAS  Google Scholar 

  3. Currie CR, Poulsen M, Mendenhall J, Boomsma JJ, Billen J (2006) Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 311:81–83

    Article  PubMed  CAS  Google Scholar 

  4. Oh DC, Poulsen M, Currie CR, Clardy J (2009) Dentigerumycin: a bacterial mediator of an ant–fungus symbiosis. Nat Chem Biol 5:391–393

    Article  PubMed  CAS  Google Scholar 

  5. Kaltenpoth M, Göttler W, Herzner G, Strohm E (2005) Symbiotic bacteria protect wasp larvae from fungal infestation. Curr Biol 15:475–479

    Article  PubMed  CAS  Google Scholar 

  6. Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J, Currie CR (2008) Bacterial protection of beetle-fungus mutualism. Science 322:63

    Article  PubMed  CAS  Google Scholar 

  7. Wood SL (1982) The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Nat 6:1359

    Google Scholar 

  8. Ayres PM, Wilkens RT, Ruel JR, Lombardero MJ, Vallery E (2000) Nitrogen budget of phloem-feeding bark beetles with and without symbiotic fungi. Ecology 81:2198–2210

    Article  Google Scholar 

  9. Six DL, Klepzig KD (2004) Dendroctonus bark beetles as model systems for studies of symbiosis. Symbiosis 37:207–232

    Google Scholar 

  10. Klepzig KD, Robison DJ, Fowler G, Minchin PR, Hain FP, Allen HL (2005) Effects of mass inoculation on induced oleoresin response in intensively managed loblolly pine. Tree Physiol 25:681–688

    Article  PubMed  Google Scholar 

  11. Lee S, Kim JJ, Breuil C (2006) Pathogenicity of Leptographium longiclavatum associated with Dendroctonus ponderosae to Pinus contorta. Can J For Res 36:2864–2872

    Article  Google Scholar 

  12. Harrington TC (2005) Ecology and evolution of mycophagous bark beetles and their fungal partners. In: Vega FE, Blackwell M (eds) Insect-fungal associations. Oxford University Press, New York, pp 257–291

    Google Scholar 

  13. Lee S, Kim JJ, Breuil C (2006) Diversity of fungi associated with the mountain pine beetle, Dendroctonus ponderosae and infested lodgepole pines in British Columbia. Fungal Divers 22:91–105

    Google Scholar 

  14. Adams AS, Adams SM, Currie CR, Gillette NE, Raffa KF (2010) Geographic variation in bacterial communities associated with the Red Turpentine Beetle (Coleoptera: Curculionidae). Environ Entomol 39:406–414

    Article  PubMed  Google Scholar 

  15. Adams AS, Six DL (2007) Temporal variation in mycophagy and prevalence of fungi associated with developmental stages of Dendroctonus ponderosae (Coleoptera: Curculionidae). Environ Entomol 36:64–72

    Article  PubMed  Google Scholar 

  16. Hofstetter RW, Klepzig KD, Moser JC, Ayres MP (2006) Seasonal dynamics of mites and fungi and their interaction with Southern Pine Beetle. Environ Entomol 35:22–30

    Article  Google Scholar 

  17. Rice AV, Thormann MN, Langor DW (2008) Mountain pine beetle-associated blue-stain fungi are differentially adapted to boreal temperatures. For Pathol 38:113–123

    Article  Google Scholar 

  18. Hofstetter RW, Dempsey TD, Klepzig KD, Ayres MP (2007) Temperature-dependent effects on mutualistic, antagonistic, and commensalistic interactions among insects, fungi and mites. Community Ecol 8:47–56

    Article  Google Scholar 

  19. Six DL, Bentz BJ (2007) Temperature determines symbiont abundance in a multipartite bark beetle–fungus ectosymbiosis. Microb Ecol 54:112–118

    Article  PubMed  CAS  Google Scholar 

  20. Klepzig KD, Six DL (2004) Bark beetle–fungal symbiosis: context dependency in complex associations. Symbiosis 37:189–205

    Google Scholar 

  21. Hofstetter RW, Cronin J, Klepzig KD, Moser JC, Ayres MP (2006) Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle. Oecologia 147:679–691

    Article  PubMed  Google Scholar 

  22. Cardoza YJ, Klepzig KD, Raffa KF (2006) Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecol Entomol 31:636–645

    Article  Google Scholar 

  23. Adams AS, Six DL, Adams SM, Holben WE (2008) In vitro interactions between yeasts and bacteria and the fungal symbionts of the Mountain Pine Beetle (Dendroctonus ponderosae). Microb Ecol 56:460–466

    Article  PubMed  Google Scholar 

  24. Adams AS, Currie CR, Cardoza Y, Klepzig KD, Raffa KF (2009) Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can J For Res 39:1133–1147

    Article  CAS  Google Scholar 

  25. Rivera FN, Gonzalez E, Gomez Z, Lopez N, Hernandez-Rodriguez C, Berkov A, Zuniga G (2009) Gut-associated yeast in bark beetles of the genus Dendroctonus Erichson (Coleoptera: Curculionidae: Scolytinae). Biol J Linn Soc 98:325–342

    Article  Google Scholar 

  26. Rios-Reyes AV, Valdes-Carrasco J, Equihua-Martinez A, Moya-Raygoza G (2008) Identification of Dendroctonus frontalis (Zimmermann) and D. mexicanus (Hopkins) (Coleoptera: Curculionidae: Scolytinae) through structures of female genitalia. Coleopt Bull 62:99–103

    Article  Google Scholar 

  27. Poulsen M, Cafaro MJ, Boomsma JJ, Currie CR (2005) Specificity of the mutualistic association between actinomycete bacteria and two sympatric species of Acromyrmex leaf-cutting ants. Mol Ecol 14:3597–3604

    Article  PubMed  CAS  Google Scholar 

  28. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  29. Ludwig W, Neumaier J, Klugbauer N, Brockmann E, Roller C, Jilg S, Reetz K, Schachtner I, Ludvigsen A, Bachleitner M (1993) Phylogenetic relationships of bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase β-subunit genes. Antonie Leeuwenhoek 64:285–305

    Article  PubMed  CAS  Google Scholar 

  30. Rojas-Jimenez K, Acuna A, Hernandez M, Blanco J, Tamayo-Castillo G (2010) Fungi and bacteria associated with the guts of wood-feeding Scarabaeidae larvae in different national parks of Costa Rica. Unpublished, direct GenBank submission

  31. Adams AS, Jordan MS, Adams SM, Suen G, Goodwin LA, Davenport KW, Currie CR, Raffa KF (2011) Cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio. ISME Journal (in press)

  32. Le Roes-Hill M, Kirby BM, Khan N, Rohland J, Meyers PR, Cowan DA, Burton SG (2009) Exploiting actinomycete biodiversity in the search for oxidative enzymes. Unpublished, direct GenBank submission

  33. Haeder S, Wirth R, Herz H, Spiteller D (2009) Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proceedings of the National Academy of Sciences 106:4742–4746

    Article  CAS  Google Scholar 

  34. Cafaro MJ, Currie CR (2005) Phylogenetic analysis of mutualistic filamentous bacteria associated with fungus-growing ants. Can J Microbiol 51:441–446

    Article  PubMed  CAS  Google Scholar 

  35. Kaltenpoth M, Schmitt T, Polodori C, Koedam D, Strohm E (2010) Symbiotic streptomycetes in antennal glands of the South American digger wasp genus Trachypus (Hymenoptera, Crabronidae). Physiol Entomol 35:196–200

    Article  CAS  Google Scholar 

  36. Hong S-H, Bunge J, Jeon S-O, Epstein SS (2006) Predicting microbial species richness. Proc Natl Acad Sci USA 103:117–122

    Article  PubMed  CAS  Google Scholar 

  37. Schloss PD, Handelsman J (2004) Status of the microbial census. Microbiol Mol Biol Rev 68:686–691

    Article  PubMed  Google Scholar 

  38. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113

    Article  Google Scholar 

  39. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis, software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  40. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inferrence under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  41. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University

  42. Maddison WP, Maddison DR (2009) Mesquite: a modular system for evolutionary analysis, version 2.6., http://mesquiteproject.org. Accessed 24 Jan 2009

  43. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235

    Article  PubMed  CAS  Google Scholar 

  44. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  45. Vasanthakumar A, Delalibera I, Handelsman J, Klepzig KD, Schloss PD, Raffa KF (2006) Characterization of gut-associated bacteria in larvae and adults of the southern pine beetle, Dendroctonus frontalis Zimmermann. Environ Entomol 35:1710–1717

    Article  Google Scholar 

  46. Kelley ST, Farrell BD (1998) Is specialization a dead end? The phylogeny of host use in Dendroctonus bark beetles (Scolytidae). Evolution 52:1731–1743

    Article  CAS  Google Scholar 

  47. Suen G, Goldman BS, Welch RD (2007) Predicting prokaryotic ecological niches using genome sequence analysis. PLoS One 2:e743

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project would not be possible without the assistance of many colleagues and field assistants. We thank Brian Strom, Paul Merten, Jason Moan, Jesse Pfammatter, Anthony Cognato, and Andrea Lucky for their assistance with collecting. We thank Rob Dugenske, Joe Moeller, Laura Schwab, and many other members of the Currie lab for their help with laboratory work. The project was funded by the USDA Forest Service Southern Research Station, the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494), and NSF-Microbial Observatories (MCB-0702025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cameron R. Currie.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Figure S1

(DOC 377 kb)

Figure S2

(DOC 375 kb)

Figure S3

(DOC 237 kb)

ESM 1

(PDF 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hulcr, J., Adams, A.S., Raffa, K. et al. Presence and Diversity of Streptomyces in Dendroctonus and Sympatric Bark Beetle Galleries Across North America. Microb Ecol 61, 759–768 (2011). https://doi.org/10.1007/s00248-010-9797-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9797-0

Keywords

Navigation