Skip to main content

Advertisement

Log in

Environmental Controls on Fungal Community Composition and Abundance Over 3 Years in Native and Degraded Shrublands

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Soil fungal communities have high local diversity and turnover, but the relative contribution of environmental and regional drivers to those patterns remains poorly understood. Local factors that contribute to fungal diversity include soil properties and the plant community, but there is also evidence for regional dispersal limitation in some fungal communities. We used different plant communities with different soil conditions and experimental manipulations of both vegetation and dispersal to distinguish among these factors. Specifically, we compared native shrublands with former native shrublands that had been disturbed or converted to pasture, resulting in soils progressively more enriched in carbon and nutrients. We tested the role of vegetation via active removal, and we manipulated dispersal by adding living soil inoculum from undisturbed native sites. Soil fungi were tracked for 3 years, with samples taken at ten time points from June 2006 to June 2009. We found that soil fungal abundance, richness, and community composition responded primarily to soil properties, which in this case were a legacy of plant community degradation. In contrast, dispersal had no effect on soil fungi. Temporal variation in soil fungi was partly related to drought status, yet it was much broader in native sites compared to pastures, suggesting some buffering due to the increased soil resources in the pasture sites. The persistence of soil fungal communities over 3 years in this study suggests that soil properties can act as a strong local environmental filter. Largely persistent soil fungal communities also indicate the potential for strong biotic resistance and soil legacies, which presents a challenge for both the prediction of how fungi respond to environmental change and our ability to manipulate fungi in efforts such as ecosystem restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, Robeson M, Edwards RA, Felts B, Rayhawk S, Knight R, Rohwer F, Jackson RB (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol 73(21):7059–7066. doi:10.1128/aem.00358-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. O'Brien HE, Parrent JL, Jackson JA, Moncalvo J-M, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71(9):5544–5550. doi:10.1128/aem.71.9.5544-5550.2005

    Article  PubMed Central  PubMed  Google Scholar 

  3. Porras-Alfaro A, Herrera J, Natvig DO, Lipinski K, Sinsabaugh RL (2011) Diversity and distribution of soil fungal communities in a semiarid grassland. Mycologia 103(1):10–21. doi:10.3852/09-297

    Article  PubMed  Google Scholar 

  4. Blackwood CB, Waldrop MP, Zak DR, Sinsabaugh RL (2007) Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition. Environ Microbiol 9:1306–1316

    Article  CAS  PubMed  Google Scholar 

  5. Waldrop MP, Zak DR, Blackwood CB, Curtis CD, Tilman D (2006) Resource availability controls fungal diversity across a plant diversity gradient. Ecol Lett 9(10):1127–1135

    Article  PubMed  Google Scholar 

  6. Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8(11):1175–1182. doi:10.1111/j.1461-0248.2005.00820.x

    Article  PubMed  Google Scholar 

  7. de Graaff M-A, Classen AT, Castro HF, Schadt CW (2010) Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytol 188(4):1055–1064. doi:10.1111/j.1469-8137.2010.03427.x

    Article  PubMed  Google Scholar 

  8. van der Putten WH, Klironomos JN, Wardle DA (2007) Microbial ecology of biological invasions. ISME J 1(1):28–37

    Article  PubMed  Google Scholar 

  9. Belnap J, Phillips SL (2001) Soil biota in an ungrazed grassland: response to annual grass (Bromus tectorum) invasion. Ecol Appl 11(5):1261–1275

    Article  Google Scholar 

  10. Broz AK, Manter DK, Vivanco JM (2007) Soil fungal abundance and diversity: another victim of the invasive plant Centaurea maculosa. ISME J 1(8):763–765

    Article  CAS  PubMed  Google Scholar 

  11. Cappuccino N, Arnason JT (2006) Novel chemistry of invasive exotic plants. Biol Lett 2(2):189–193. doi:10.1098/rsbl.2005.0433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Peñuelas J, Sardans J, Llusià J, Owen SM, Carnicer J, Giambelluca TW, Rezende EL, Waite M, Niinemets U (2010) Faster returns on 'leaf economics' and different biogeochemical niche in invasive compared with native plant species. Glob Chang Biol 16(8):2171–2185. doi:10.1111/j.1365-2486.2009.02054.x

    Article  Google Scholar 

  13. McGuire K, Fierer N, Bateman C, Treseder K, Turner B (2011) Fungal community composition in neotropical rain forests: the influence of tree diversity and precipitation. Microb Ecol 63(4):804–812. doi:10.1007/s00248-011-9973-x

    Article  PubMed  Google Scholar 

  14. Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40(9):2407–2415. doi:10.1016/j.soilbio.2008.05.021

    Article  CAS  Google Scholar 

  15. Arenz BE, Blanchette RA (2011) Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys. Soil Biol Biochem 43(2):308–315. doi:10.1016/j.soilbio.2010.10.016

    Article  CAS  Google Scholar 

  16. Talbot JM, Bruns TD, Smith DP, Branco S, Glassman SI, Erlandson S, Vilgalys R, Peay KG (2013) Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition. Soil Biol Biochem 57(0):282–291. doi:10.1016/j.soilbio.2012.10.004

    Article  CAS  Google Scholar 

  17. Hanson C, Allison S, Bradford M, Wallenstein M, Treseder K (2008) Fungal taxa target different carbon sources in forest soil. Ecosystems 11(7):1157–1167. doi:10.1007/s10021-008-9186-4

    Article  CAS  Google Scholar 

  18. McGuire KL, Bent E, Borneman J, Majumder A, Allison SD, Treseder KK (2010) Functional diversity in resource use by fungi. Ecology 91(8):2324–2332. doi:10.1890/09-0654.1

    Article  PubMed  Google Scholar 

  19. Edwards IP, Zak DR, Kellner H, Eisenlord SD, Pregitzer KS (2011) Simulated atmospheric N deposition alters fungal community composition and suppresses ligninolytic gene expression in a northern hardwood forest. PLoS One 6(6):e20421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4(10):1340–1351

    Article  PubMed  Google Scholar 

  21. Ives AR, Gross K, Klug JL (1999) Stability and variability in competitive communities. Science 286(5439):542–544. doi:10.1126/science.286.5439.542

    Article  CAS  PubMed  Google Scholar 

  22. Hawkes CV, Kivlin SN, Rocca JD, Huguet V, Thomsen MA, Suttle KB (2011) Fungal community responses to precipitation. Glob Chang Biol 17(4):1637–1645. doi:10.1111/j.1365-2486.2010.02327.x

    Article  Google Scholar 

  23. Kennedy N, Brodie E, Connolly J, Clipson N (2006) Seasonal influences on fungal community structure in unimproved and improved upland grassland soils. Can J Microbiol 52(7):689–694. doi:10.1139/w06-015

    Article  CAS  PubMed  Google Scholar 

  24. Cregger MA, Schadt CW, McDowell NG, Pockman WT, Classen AT (2012) Response of the soil microbial community to changes in precipitation in a semiarid ecosystem. Appl Environ Microbiol 78(24):8587–8594. doi:10.1128/aem.02050-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301(5638):1359–1361. doi:10.1126/science.1086940

    Article  CAS  PubMed  Google Scholar 

  26. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Micro 10(7):497–506

    CAS  Google Scholar 

  27. Fierer N, Liu Z, Rodríguez-Hernández M, Knight R, Henn M, Hernandez MT (2008) Short-term temporal variability in airborne bacterial and fungal populations. Appl Environ Microbiol 74(1):200–207. doi:10.1128/aem.01467-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Fröhlich-Nowoisky J, Pickersgill DA, Després VR, Pöschl U (2009) High diversity of fungi in air particulate matter. Proc Natl Acad Sci U S A 106(31):12814–12819. doi:10.1073/pnas.0811003106

    Article  PubMed Central  PubMed  Google Scholar 

  29. Brown JKM, HovmÃller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297(5581):537–541. doi:10.1126/science.1072678

    Article  CAS  PubMed  Google Scholar 

  30. Roper M, Pepper RE, Brenner MP, Pringle A (2008) Explosively launched spores of ascomycete fungi have drag-minimizing shapes. Proc Natl Acad Sci U S A 105(52):20583–20588. doi:10.1073/pnas.0805017105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Peay KG, Schubert MG, Nguyen NH, Bruns TD (2012) Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol Ecol 21(16):4122–4136. doi:10.1111/j.1365-294X.2012.05666.x

    Article  PubMed  Google Scholar 

  32. Armstrong RA (1976) Fugitive species: experiments with fungi and some theoretical considerations. Ecology 57(5):953–963. doi:10.2307/1941060

    Article  Google Scholar 

  33. Kennedy PG, Higgins LM, Rogers RH, Weber MG (2011) Colonization-competition tradeoffs as a mechanism driving successional dynamics in ectomycorrhizal fungal communities. PLoS One 6(9):e25126. doi:10.1371/journal.pone.0025126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Bahram M, Kõljalg U, Courty P-E, Diédhiou AG, Kjøller R, Põlme S, Ryberg M, Veldre V, Tedersoo L (2013) The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales. J Ecol 101(5):1335–1344. doi:10.1111/1365-2745.12120

    Article  Google Scholar 

  35. Menges E, Hawkes C (1998) Interactive effects of fire and microhabitat on plants of Florida scrub. Ecol Appl 8:935–946

    Article  Google Scholar 

  36. Abrahamson W, Johnson A, Layne J, Peroni P (1984) Vegetation of the Archbold Biological Station, Florida: an example of the southern Lake Wales Ridge. Fla Scientist 47:209–250

    Google Scholar 

  37. Menges ES, Craddock A, Salo J, Zinthefer R, Weekley CW (2008) Gap ecology in Florida scrub: species occurrence, diversity and gap properties. J Veg Sci 19(4):503–514. doi:10.3170/2008-8-18399

    Article  Google Scholar 

  38. Hawkes CV, Flechtner VR (2002) Biological soil crusts in a xeric Florida shrubland: composition, abundance, and spatial heterogeneity of crusts with different disturbance histories. Microb Ecol 43:1–12

    Article  CAS  PubMed  Google Scholar 

  39. Carter LJ, Lewis D, Crockett L, Vega J (1989) Soil survey of Highlands County. Florida, USDA, Soil Conservation Service, Gainesville, FL

    Google Scholar 

  40. Hamman ST, Hawkes CV (2013) Biogeochemical and microbial legacies of non-native grasses can affect restoration success. Restor Ecol 21:58–66. doi:10.1111/j.1526-100X.2011.00856.x

    Article  Google Scholar 

  41. Petru M, Menges ES (2004) Shifting sands in Florida scrub gaps and roadsides: dynamic microsites for herbs. Am Midl Nat 151(1):101–113

    Article  Google Scholar 

  42. Brundrett M, Melville L, Peterson L (1994) Practical methods in mycorrhiza research. Mycologue Publications, Guelph, Canada

    Google Scholar 

  43. Griffiths RI, Whiteley AS, O'Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for Basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  45. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis N, Gelfand D, Sninsky J, White T (eds) PCR—protocols and applications—a laboratory manual. Academic, New York, pp 315–322

    Google Scholar 

  46. Hausmann NT, Hawkes CV (2009) Plant neighborhood control of arbuscular mycorrhizal community composition. New Phytol 183(4):1188–1200. doi:10.1111/j.1469-8137.2009.02882.x

    Article  PubMed  Google Scholar 

  47. Nilsson RH, Abarenkov K, Veldre V, Nylinder S, De Wit P, Brosche S, Alfredsson JF, Ryberg M, Kristiansson E (2010) An open source chimera checker for the fungal ITS region. Mol Ecol Resour 10:1076–1081

  48. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596. doi:10.1093/nar/gks1219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Liu K, Raghavan S, Nelesen S, Linder CR, Warnow T (2009) Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science 324(5934):1561–1564

    Article  CAS  PubMed  Google Scholar 

  50. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  51. Drummond A, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A (2009) Geneious v4.8, Available from ≤http://www.geneious.com/>

  52. Dickie I, FitzJohn R (2007) Using terminal restriction fragment length polymorphism (T-RFLP) to identify mycorrhizal fungi: a methods review. Mycorrhiza 17(4):259–270

    Article  CAS  PubMed  Google Scholar 

  53. Fitzjohn RG, Dickie IA (2007) TRAMPR: an R package for analysis and matching of terminal-restriction fragment length polymorphism (TRFLP) profiles. Mol Ecol Notes 7(4):583–587

    Article  CAS  Google Scholar 

  54. Shaw RG, Mitchell-Olds T (1993) ANOVA for unbalanced data: an overview. Ecology 74(6):1638–1645. doi:10.2307/1939922

    Article  Google Scholar 

  55. Mielke PW Jr, Berry KJ (2001) Permutation methods: a distance function approach. Springer series in statistics. Springer, New York

    Book  Google Scholar 

  56. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18(1):117–143. doi:10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  57. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73(3):1045–1055. doi:10.2307/1940179

    Article  Google Scholar 

  58. Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol Monogr 75(4):435–450. doi:10.1890/05-0549

    Article  Google Scholar 

  59. IBM Corp. (2010) IBM SPSS Statistics for Windows, Version 19.0. IBM Corp., Armonk, NY

  60. McCune B, Mefford MJ (2011) PC-ORD v. 6.12. Multivariate analysis of ecological data. MjM Software, Gleneden Beach, OR, US

  61. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75(15):5111–5120. doi:10.1128/aem.00335-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Lekberg Y, Gibbons SM, Rosendahl S, Ramsey PW (2013) Severe plant invasions can increase mycorrhizal fungal abundance and diversity. ISME J. doi:http://www.nature.com/ismej/journal/vaop/ncurrent/suppinfo/ismej201341s1.html

  63. Mack MC, D'Antonio CM (2003) Exotic grasses alter controls over soil nitrogen dynamics in a Hawaiian woodland. Ecol Appl 13(1):154–166

    Article  Google Scholar 

  64. Evans RD, Rimer R, Sperry L, Belnap J (2001) Exotic plant invasion alters nitrogen dynamics in an arid grassland. Ecol Appl 11(5):1301–1310. doi:10.1890/1051-0761(2001)011[1301:EPIAND]2.0.CO;2

    Article  Google Scholar 

  65. Kulmatiski A, Beard KH (2008) Decoupling plant-growth from land-use legacies in soil microbial communities. Soil Biol Biochem 40(5):1059–1068. doi:10.1016/j.soilbio.2007.11.020

    Article  CAS  Google Scholar 

  66. Weekley CW, Gagnon D, Menges ES, Quintana-Ascencio PF, Saha S (2007) Variation in soil moisture in relation to rainfall, vegetation, gaps, and time-since-fire in Florida scrub. Ecoscience 14(3):377–386. doi:10.2980/1195-6860(2007)14[377:vismir]2.0.co;2

    Article  Google Scholar 

  67. McCann KS (2000) The diversity-stability debate. Nature 405(6783):228–233

    Article  CAS  PubMed  Google Scholar 

  68. Weekley CW, Menges ES (2003) Species and vegetation responses to prescribed fire in a long-unburned, endemic-rich Lake Wales Ridge scrub. J Torrey Bot Soc 130(4):265–282

    Article  Google Scholar 

  69. Klein D, McLendon T, Paschke MW, Redente EF (1995) Saprophytic fungal-bacterial biomass variations in successional communities of a semi-arid steppe ecosystem. Biol Fertil Soils 19(2–3):253–256. doi:10.1007/bf00336168

    Article  Google Scholar 

  70. Ohtonen R, Fritze H, Pennanen T, Jumpponen A, Trappe J (1999) Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia 119(2):239–246. doi:10.1007/s004420050782

    Article  Google Scholar 

  71. Parker SS, Seabloom EW, Schimel JP (2012) Grassland community composition drives small-scale spatial patterns in soil properties and processes. Geoderma 170(0):269–279. doi:10.1016/j.geoderma.2011.11.018

    Article  Google Scholar 

  72. Evans S, Wallenstein M (2012) Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter? Biogeochemistry 109(1–3):101–116. doi:10.1007/s10533-011-9638-3

    Article  Google Scholar 

  73. McLauchlan K (2006) The nature and longevity of agricultural impacts on soil carbon and nutrients: a review. Ecosystems 9(8):1364–1382. doi:10.1007/s10021-005-0135-1

    Article  CAS  Google Scholar 

  74. Marchante E, Kjøller A, Struwe S, Freitas H (2009) Soil recovery after removal of the N2-fixing invasive Acacia longifolia: consequences for ecosystem restoration. Biol Invasions 11(4):813–823. doi:10.1007/s10530-008-9295-1

    Article  Google Scholar 

  75. Elgersma K, Ehrenfeld J, Yu S, Vor T (2011) Legacy effects overwhelm the short-term effects of exotic plant invasion and restoration on soil microbial community structure, enzyme activities, and nitrogen cycling. Oecologia 167(3):733–745. doi:10.1007/s00442-011-2022-0

    Article  PubMed  Google Scholar 

  76. Grman E, Suding KN (2010) Within-year soil legacies contribute to strong priority effects of exotics on native California grassland communities. Restor Ecol 18(5):664–670. doi:10.1111/j.1526-100X.2008.00497.x

    Article  Google Scholar 

  77. Bever JD (1994) Feedback between plants and their soil communities in an old field community. Ecology 75(7):1965–1977

    Article  Google Scholar 

  78. Suding KN, Gross KL, Houseman GR (2004) Alternative states and positive feedbacks in restoration ecology. Trends Ecol Evol 19(1):46–53

    Article  PubMed  Google Scholar 

  79. Meredith DS (1973) Significance of spore release and dispersal mechanisms in plant disease epidemiology. Annu Rev Phytopathol 11(1):313–342

    Article  Google Scholar 

  80. Lekberg Y, Koide RT, Rohr JR, Aldrich-Wolfe L, Morton JB (2007) Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol 95(1):95–105

    Article  Google Scholar 

  81. Kardol P, Bezemer TM, Van Der Putten WH (2009) Soil organism and plant introductions in restoration of species-rich grassland communities. Restor Ecol 17(2):258–269. doi:10.1111/j.1526-100X.2007.00351.x

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to E. Menges, H. Swain, R. Boughton, K. Main, S. Smith, and the staff of Archbold Biological Station for access to the sites and local support. Assistance with fieldwork and lab analyses was provided by E. Brault, S. Hamman, N. Johnson, S. Kivlin, and other members of the Hawkes Lab. Previous versions of this manuscript were significantly improved by comments from S. Kivlin, E. Menges, B. Sikes, and four anonymous reviewers. Support for the project was provided by the National Research Initiative of the USDA Cooperative State Research, Education, and Extension Service grant number 2006-35101-16575 to CVH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine V. Hawkes.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glinka, C., Hawkes, C.V. Environmental Controls on Fungal Community Composition and Abundance Over 3 Years in Native and Degraded Shrublands. Microb Ecol 68, 807–817 (2014). https://doi.org/10.1007/s00248-014-0443-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0443-0

Keywords

Navigation