Skip to main content
Log in

Phylogenetic and Functional Diversity Within Toluene-Degrading, Sulphate-Reducing Consortia Enriched from a Contaminated Aquifer

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Three toluene-degrading microbial consortia were enriched under sulphate-reducing conditions from different zones of a benzene, toluene, ethylbenzene and xylenes (BTEX) plume of two connected contaminated aquifers. Two cultures were obtained from a weakly contaminated zone of the lower aquifer, while one culture originated from the highly contaminated upper aquifer. We hypothesised that the different habitat characteristics are reflected by distinct degrader populations. Degradation of toluene with concomitant production of sulphide was demonstrated in laboratory microcosms and the enrichment cultures were phylogenetically characterised. The benzylsuccinate synthase alpha-subunit (bssA) marker gene, encoding the enzyme initiating anaerobic toluene degradation, was targeted to characterise the catabolic diversity within the enrichment cultures. It was shown that the hydrogeochemical parameters in the different zones of the plume determined the microbial composition of the enrichment cultures. Both enrichment cultures from the weakly contaminated zone were of a very similar composition, dominated by Deltaproteobacteria with the Desulfobulbaceae (a Desulfopila-related phylotype) as key players. Two different bssA sequence types were found, which were both affiliated to genes from sulphate-reducing Deltaproteobacteria. In contrast, the enrichment culture from the highly contaminated zone was dominated by Clostridia with a Desulfosporosinus-related phylotype as presumed key player. A distinct bssA sequence type with high similarity to other recently detected sequences from clostridial toluene degraders was dominant in this culture. This work contributes to our understanding of the niche partitioning between degrader populations in distinct compartments of BTEX-contaminated aquifers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Heider J, Spormann AM, Beller HR, Widdel F (1998) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22:459–473. doi:10.1111/j.1574-6976.1998.tb00381.x

    Article  CAS  Google Scholar 

  2. Kleinsteuber S, Schleinitz KM, Vogt C (2012) Key players and team play: anaerobic microbial communities in hydrocarbon-contaminated aquifers. Appl Microbiol Biotechnol 94:851–873. doi:10.1007/s00253-012-4025-0

    Article  CAS  PubMed  Google Scholar 

  3. Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276

    Article  CAS  PubMed  Google Scholar 

  4. Morasch B, Schink B, Tebbe CC, Meckenstock RU (2004) Degradation of o-xylene and m-xylene by a novel sulfate-reducer belonging to the genus Desulfotomaculum. Arch Microbiol 181:407–417

    Article  CAS  PubMed  Google Scholar 

  5. Winderl C, Penning H, von Netzer F, Meckenstock RU, Lueders T (2010) DNA-SIP identifies sulfate-reducing Clostridia as important toluene degraders in tar-oil-contaminated aquifer sediment. ISME J 4:1314–1325. doi:10.1038/ismej.2010.54

    Article  PubMed  Google Scholar 

  6. Pilloni G, von Netzer F, Engel M, Lueders T (2011) Electron acceptor-dependent identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP. FEMS Microbiol Ecol 78:165–175. doi:10.1111/j.1574-6941.2011.01083.x

    Article  CAS  PubMed  Google Scholar 

  7. Boll M, Fuchs G, Heider J (2002) Anaerobic oxidation of aromatic compounds and hydrocarbons. Curr Opin Chem Biol 6:604–611

    Article  CAS  PubMed  Google Scholar 

  8. Winderl C, Schaefer S, Lueders T (2007) Detection of anaerobic toluene and hydrocarbon degraders in contaminated aquifers using benzylsuccinate synthase (bssA) genes as a functional marker. Environ Microbiol 9:1035–1046

    Article  CAS  PubMed  Google Scholar 

  9. Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T (2008) Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 74:792–801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Vieth A, Kästner M, Schirmer M, Weiß H, Gödeke S, Meckenstock RU, Richnow HH (2005) Monitoring in situ biodegradation of benzene and toluene by stable carbon isotope fractionation. Environ Toxicol Chem 24:51–60. doi:10.1002/etc.5620240108

    Article  CAS  PubMed  Google Scholar 

  11. Fischer A, Bauer J, Meckenstock RU, Stichler W, Griebler C, Maloszewski P, Kästner M, Richnow HH (2006) A multitracer test proving the reliability of Rayleigh equation-based approach for assessing biodegradation in a BTEX contaminated aquifer. Environ Sci Technol 40:4245–4252

    Article  CAS  PubMed  Google Scholar 

  12. Fischer A, Theuerkorn K, Stelzer N, Gehre M, Thullner M, Richnow HH (2007) Applicability of stable isotope fractionation analysis for the characterization of benzene biodegradation in a BTEX-contaminated aquifer. Environ Sci Technol 41:3689–3696. doi:10.1021/es061514m

    Article  CAS  PubMed  Google Scholar 

  13. Schirmer M, Dahmke A, Dietrich P, Dietze M, Gödeke S, Richnow HH, Schirmer K, Weiß H, Teutsch G (2006) Natural attenuation research at the contaminated megasite Zeitz. J Hydrol 328:393–407

    Article  Google Scholar 

  14. Alfreider A, Vogt C (2007) Bacterial diversity and aerobic biodegradation potential in a BTEX-contaminated aquifer. Water Air Soil Pollut 183:415–426

    Article  CAS  Google Scholar 

  15. Gödeke S, Richnow HH, Weiß H, Fischer A, Vogt C, Borsdorf H, Schirmer M (2006) Multi tracer test for the implementation of enhanced in-situ bioremediation at a BTEX-contaminated megasite. J Contam Hydrol 87:211–236. doi:10.1016/j.jconhyd.2006.05.008

    Article  PubMed  Google Scholar 

  16. Vogt C, Gödeke S, Treutler HC, Weiß H, Schirmer M, Richnow HH (2007) Benzene oxidation under sulfate-reducing conditions in columns simulating in situ conditions. Biodegradation 18:625–636

    Article  CAS  PubMed  Google Scholar 

  17. Fischer A, Gehre M, Breitfeld J, Richnow HH, Vogt C (2009) Carbon and hydrogen isotope fractionation of benzene during biodegradation under sulfate-reducing conditions: a laboratory to field site approach. Rapid Commun Mass Spectrom 23:2439–2447. doi:10.1002/rcm.4049

    Article  CAS  PubMed  Google Scholar 

  18. Kleinsteuber S, Schleinitz KM, Breitfeld J, Harms H, Richnow HH, Vogt C (2008) Molecular characterization of bacterial communities mineralizing benzene under sulfate-reducing conditions. FEMS Microbiol Ecol 66:143–157

    Article  CAS  PubMed  Google Scholar 

  19. Herrmann S, Kleinsteuber S, Chatzinotas A, Kuppardt S, Lueders T, Richnow HH, Vogt C (2010) Functional characterization of an anaerobic benzene-degrading enrichment culture by DNA stable isotope probing. Environ Microbiol 12:401–411

    Article  CAS  PubMed  Google Scholar 

  20. Taubert M, Vogt C, Wubet T, Kleinsteuber S, Tarkka MT, Harms H, Buscot F, Richnow HH, von Bergen M, Seifert J (2012) Protein-SIP enables time-resolved analysis of the carbon flux in a sulfate-reducing, benzene-degrading microbial consortium. ISME J 6:2291–2301. doi:10.1038/ismej.2012.68

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Cline J (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    Article  CAS  Google Scholar 

  22. Kleinsteuber S, Riis V, Fetzer I, Harms H, Müller S (2006) Population dynamics within a microbial consortium during growth on diesel fuel in saline environments. Appl Environ Microbiol 72:3531–3542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Lane DJ (1991) 16S/23S rRNA sequencing. Nucleic Acid Tech. Bact. Syst. John Wiley & Sons, Chichester, pp 115–175

    Google Scholar 

  24. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  25. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/AEM.00062-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319. doi:10.1093/bioinformatics/bth226

    Article  CAS  PubMed  Google Scholar 

  27. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  28. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Müller S, Vogt C, Laube M, Harms H, Kleinsteuber S (2009) Community dynamics within a bacterial consortium during growth on toluene under sulfate-reducing conditions. FEMS Microbiol Ecol 70:586–596

    Article  PubMed  Google Scholar 

  31. Meckenstock RU (1999) Fermentative toluene degradation in anaerobic defined syntrophic cocultures. FEMS Microbiol Lett 177:67–73. doi:10.1111/j.1574-6968.1999.tb13715.x

    Article  CAS  PubMed  Google Scholar 

  32. Jehmlich N, Kleinsteuber S, Vogt C, Benndorf D, Harms H, Schmidt F, Von Bergen M, Seifert J (2010) Phylogenetic and proteomic analysis of an anaerobic toluene-degrading community. J Appl Microbiol 109:1937–1945. doi:10.1111/j.1365-2672.2010.04823.x

    Article  CAS  PubMed  Google Scholar 

  33. Herrmann S, Vogt C, Fischer A, Kuppardt A, Richnow HH (2009) Characterization of anaerobic xylene biodegradation by two-dimensional isotope fractionation analysis. Environ Microbiol Rep 1:535–544

    Article  CAS  PubMed  Google Scholar 

  34. Callaghan AV, Davidova IA, Savage-Ashlock K, Grieg LM, Suflita JM, Kukor JJ, Wawrik B (2010) Diversity of benzyl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures. Environ Sci Technol 44:7287–7294

    Article  CAS  PubMed  Google Scholar 

  35. Yagi JM, Suflita JM, Gieg LM et al (2010) Subsurface cycling of nitrogen and anaerobic aromatic hydrocarbon biodegradation revealed by nucleic acid and metabolic biomarkers. Appl Environ Microbiol 76:3124–3134. doi:10.1128/AEM.00172-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. von Netzer F, Pilloni G, Kleindienst S, Krüger M, Knittel K, Gründger F, Lueders T (2013) Enhanced gene detection assays for fumarate-adding enzymes allow uncovering of anaerobic hydrocarbon degraders in terrestrial and marine systems. Appl Environ Microbiol 79:543–552. doi:10.1128/AEM.02362-12

    Article  Google Scholar 

  37. Dojka MA, Hugenholtz P, Haack SK, Pace NR (1998) Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64:3869–3877

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Bombach P, Chatzinotas A, Neu TR, Kästner M, Lueders T, Vogt C (2010) Enrichment and characterization of a sulfate-reducing toluene-degrading microbial consortium by combining in situ microcosms and stable isotope probing techniques. FEMS Microbiol Ecol 71:237–246. doi:10.1111/j.1574-6941.2009.00809.x

    Article  CAS  PubMed  Google Scholar 

  39. Müller S, Hübschmann T, Kleinsteuber S, Vogt C (2012) High resolution single cell analytics to follow microbial community dynamics in anaerobic ecosystems. Methods 57:338–349. doi:10.1016/j.ymeth.2012.04.001

    Article  PubMed  Google Scholar 

  40. Campbell BJ, Engel AS, Porter ML, Takai K (2006) The versatile ε-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4:458–468. doi:10.1038/nrmicro1414

    Article  CAS  PubMed  Google Scholar 

  41. Bozinovski D, Herrmann S, Richnow H-H, von Bergen M, Seifert J, Vogt C (2012) Functional analysis of an anaerobic m-xylene-degrading enrichment culture using protein-based stable isotope probing. FEMS Microbiol Ecol 81:134–144. doi:10.1111/j.1574-6941.2012.01334.x

    Article  CAS  PubMed  Google Scholar 

  42. Zhang T, Ke SZ, Liu Y, Fang HP (2005) Microbial characteristics of a methanogenic phenol-degrading sludge. Water Sci Technol J Int Assoc Water Pollut Res 52:73–78

    CAS  Google Scholar 

  43. Phelps CD, Kerkhof LJ, Young LY (1998) Molecular characterization of a sulfate-reducing consortium which mineralizes benzene. FEMS Microbiol Ecol 27:269–279

    Article  CAS  Google Scholar 

  44. Hubert CRJ, Oldenburg TBP, Fustic M, Gray ND, Larter SR, Penn K, Rowan AK, Seshadri R, Sherry A, Swainsbury R, Voordouw G, Voordouw JK, Head IM (2012) Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil. Environ Microbiol 14:387–404. doi:10.1111/j.1462-2920.2011.02521.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Porter ML, Engel AS (2008) Diversity of uncultured Epsilonproteobacteria from terrestrial sulfidic caves and springs. Appl Environ Microbiol 74:4973–4977. doi:10.1128/AEM.02915-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Jones DS, Tobler DJ, Schaperdoth I, Mainiero M, Macalady JL (2010) Community structure of subsurface biofilms in the thermal sulfidic caves of Acquasanta Terme, Italy. Appl Environ Microbiol 76:5902–5910. doi:10.1128/AEM.00647-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Engel AS, Meisinger DB, Porter ML, Payn RA, Schmid M, Stern LA, Schleifer KH, Lee NM (2009) Linking phylogenetic and functional diversity to nutrient spiraling in microbial mats from Lower Kane Cave (USA). ISME J 4:98–110

    Article  CAS  PubMed  Google Scholar 

  48. Liang JB, Chen YQ, Lan CY, Tam NFY, Zan QJ, Huang LN (2007) Recovery of novel bacterial diversity from mangrove sediment. Mar Biol 150:739–747

    Article  Google Scholar 

  49. Oude Elferink SJWH, Maas RN, Harmsen HJM, Stams AJM (1995) Desulforhabdus amnigenus gen. nov. sp. nov., a sulfate reducer isolated from anaerobic granular sludge. Arch Microbiol 164:119–124

    Article  CAS  PubMed  Google Scholar 

  50. Harmsen HJM, Van Kuijk BLM, Plugge CM, Akkermans ADL, De Vos WM, Stams AJM (1998) Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Bacteriol 48:1383–1387

    Article  CAS  PubMed  Google Scholar 

  51. Chen S, Liu X, Dong X (2005) Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors. Int J Syst Evol Microbiol 55:1319–1324

    Article  CAS  PubMed  Google Scholar 

  52. Plugge CM, Zhang W, Scholten JCM, Stams AJM (2011) Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol 2:81. doi:10.3389/fmicb.2011.00081

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Widdel F, Hansen TA (1992) The dissimilatory sulfate- and sulfur-reducing bacteria, 2nd edn. The prokaryotes, Springer, New York, pp 583–624

    Google Scholar 

  54. Diekert G, Wohlfarth G (1994) Metabolism of homoacetogens. Antonie Van Leeuwenhoek 66:209–221

    Article  CAS  PubMed  Google Scholar 

  55. Grabowski A, Nercessian O, Fayolle F, Blanchet D, Jeanthon C (2005) Microbial diversity in production waters of a low‐temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54:427–443. doi:10.1016/j.resmic.2005.03.009

    Article  CAS  PubMed  Google Scholar 

  56. Behrens S, Azizian MF, McMurdie PJ, Sabalowsky A, Dolan ME, Semprini L, Spormann AM (2008) Monitoring abundance and expression of “Dehalococcoides” species chloroethene-reductive dehalogenases in a tetrachloroethene-dechlorinating flow column. Appl Environ Microbiol 74:5695–5703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Macbeth TW, Cummings DE, Spring S, Petzke LM, Sorenson KS (2004) Molecular characterization of a dechlorinating community resulting from in situ biostimulation in a trichloroethene-contaminated deep, fractured basalt aquifer and comparison to a derivative laboratory culture. Appl Environ Microbiol 70:7329–7341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJP, Gorby YA, Goodwin S (1993) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344

    Article  CAS  PubMed  Google Scholar 

  59. Coates JD, Bhupathiraju VK, Achenbach LA, Mclnerney MJ, Lovely DR (2001) Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe (III)-reducers. Int J Syst Evol Microbiol 51:581–588

    Article  CAS  PubMed  Google Scholar 

  60. Kunapuli U, Jahn MK, Lueders T, Geyer R, Heipieper HJ, Meckenstock RU (2010) Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. Int J Syst Evol Microbiol 60:686–695

    Article  CAS  PubMed  Google Scholar 

  61. Botton S, Van Harmelen M, Braster M, Parsons JR, Röling WF (2007) Dominance of Geobacteraceae in BTX-degrading enrichments from an iron-reducing aquifer. FEMS Microbiol Ecol 62:118–130. doi:10.1111/j.1574-6941.2007.00371.x

    Article  CAS  PubMed  Google Scholar 

  62. Holmes DE, O’Neil RA, Vrionis HA, N’Guessan LA, Ortiz-Bernad I, Larrahondo MJ, Adams LA, Ward JA, Nicoll JS, Nevin KP, Chavan MA, Johnson JP, Long PE, Lovely DR (2007) Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments. ISME J 1:663–677. doi:10.1038/ismej.2007.85

    Article  CAS  PubMed  Google Scholar 

  63. Staats M, Braster M, Röling WFM (2011) Molecular diversity and distribution of aromatic hydrocarbon-degrading anaerobes across a landfill leachate plume. Environ Microbiol 13:1216–1227. doi:10.1111/j.1462-2920.2010.02421.x

    Article  CAS  PubMed  Google Scholar 

  64. Ishii S, Yamamoto M, Kikuchi M, Oshima K, Hattori M, Otsuka S, Senoo K (2009) Microbial populations responsive to denitrification-inducing conditions in rice paddy soil, as revealed by comparative 16S rRNA gene analysis. Appl Environ Microbiol 75:7070–7078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Sakai N, Kurisu F, Yagi O, Nakajima F, Yamamoto K (2009) Identification of putative benzene-degrading bacteria in methanogenic enrichment cultures. J Biosci Bioeng 108:501–507. doi:10.1016/j.jbiosc.2009.06.005

    Article  CAS  PubMed  Google Scholar 

  66. Ramamoorthy S, Sass H, Langner H, Schumann P, Kroppenstedt RM, Spring S, Overmann J, Rosenzweig RF (2006) Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int J Syst Evol Microbiol 56:2729–2736

    Article  CAS  PubMed  Google Scholar 

  67. Liu A, Garcia-Dominguez E, Rhine E, Young L (2004) A novel arsenate respiring isolate that can utilize aromatic substrates. FEMS Microbiol Ecol 48:323–332. doi:10.1016/j.femsec.2004.02.008

    Article  CAS  PubMed  Google Scholar 

  68. Spring S, Rosenzweig F (2006) The genera Desulfitobacterium and Desulfosporosinus: taxonomy. The prokaryotes. Springer, Berlin, pp 771–786

    Google Scholar 

  69. Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R, Wilkes H, Schink B, Rabus R (2009) Anaerobic degradation of naphthalene and 2‐methylnaphthalene by strains of marine sulfate‐reducing bacteria. Environ Microbiol 11:209–219. doi:10.1111/j.1462-2920.2008.01756.x

    Article  CAS  PubMed  Google Scholar 

  70. Grundmann O, Behrends A, Rabus R, Amann J, Halder T, Heider J, Widdel F (2007) Genes encoding the candidate enzyme for anaerobic activation of n-alkanes in the denitrifying bacterium, strain HxN1. Environ Microbiol 10:376–385

    Article  PubMed  Google Scholar 

  71. Zedelius J, Rabus R, Grundmann O, Werner I, Brodkorb D, Schreiber F, Ehrenreich P, Behrends A, Wilkes H, Kube M, Reinhardt R, Widdel F (2011) Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation. Environ Microbiol Rep 3:125–135. doi:10.1111/j.1758-2229.2010.00198.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Callaghan AV, Wawrik B, Ní Chadhain SM, Young LY, Zylstra GJ (2008) Anaerobic alkane-degrading strain AK-01 contains two alkylsuccinate synthase genes. Biochem Biophys Res Commun 366:142–148. doi:10.1016/j.bbrc.2007.11.094

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke Kuppardt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuppardt, A., Kleinsteuber, S., Vogt, C. et al. Phylogenetic and Functional Diversity Within Toluene-Degrading, Sulphate-Reducing Consortia Enriched from a Contaminated Aquifer. Microb Ecol 68, 222–234 (2014). https://doi.org/10.1007/s00248-014-0403-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0403-8

Keywords

Navigation