Skip to main content

Advertisement

Log in

Listeria monocytogenes Can Form Biofilms in Tap Water and Enter Into the Viable but Non-Cultivable State

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Listeria monocytogenes is a foodborne pathogen that can be transmitted through contaminated raw food or by ready-to-eat products that have been in contact with contaminated surfaces. Tap water (TW) is used to wash produce, as a processed food constituent and to wash processing surfaces and floors. The main aim of this work was to investigate the formation and survival of L. monocytogenes biofilms on stainless steel (SS) coupons in TW at 4, 22, 30 and 37 °C. For that, coupons with biofilm were visualised in situ while other coupons were scraped to quantify total cells by SYTO 9, cultivable numbers by plating onto brain heart infusion agar and viable numbers by the direct viable count method. Results showed that L. monocytogenes can form biofilms on SS surfaces in TW at any temperature, including at 4 °C. The number of total cells was similar for all the conditions tested while cultivable numbers varied between the level of detection (<8.3 CFU cm−2) and 3.5 × 105 CFU cm−2, meaning between 7.0 × 104 and 1.1 × 107 cells cm−2 have entered the viable but non-cultivable (VBNC) state. This work clearly demonstrates that L. monocytogenes can form biofilms in TW and that sessile cells can remain viable and cultivable in some conditions for at least the 48 h investigated. On the other hand, VBNC adaptation suggests that the pathogen can remain undetectable using traditional culture recovery techniques, which may give a false indication of processing surface hygiene status, leading to potential cross-contamination of food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gandhi M, Chikindas ML (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1–15

    Article  PubMed  Google Scholar 

  2. Farber JM, Peterkin PI (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55:476–511

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Nørrung B (2000) Microbiological criteria for Listeria monocytogenes in foods under special consideration of risk assessment approaches. Int J Food Microbiol 62:217–221

    Article  PubMed  Google Scholar 

  4. European Commission (2007) Commission Regulation (EC) No 1441/2007 of 5 December 2007 amending Regulation (EC) No 2073/2005 on microbiological criteria for foodstuffs. Off J Eur Union L L322:12–29

    Google Scholar 

  5. European Commission (2005) Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off J Eur Union L L338:1–26

    Google Scholar 

  6. Dalton CB, Austin CC, Sobel J, Hayes PS, Bibb WF, Graves LM, Swaminathan B, Proctor ME, Griffin PM (1997) An outbreak of gastroenteritis and fever due to Listeria monocytogenes in milk. N Engl J Med 336:100–106

    Article  CAS  PubMed  Google Scholar 

  7. Harvey J, Gilmour A (1994) Application of multilocus enzyme electrophoresis and restriction fragment length polymorphism analysis to the typing of Listeria monocytogenes strains isolated from raw milk, nondairy foods, and clinical and veterinary sources. Appl Environ Microbiol 60:1547–1553

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Vitas AI, Aguado V, Garcia-Jalon I (2004) Occurrence of Listeria monocytogenes in fresh and processed foods in Navarra (Spain). Int J Food Microbiol 90:349–356

    Article  CAS  PubMed  Google Scholar 

  9. Watkins J, Sleath KP (1981) Isolation and enumeration of Listeria monocytogenes from sewage, sewage sludge and river water. J Appl Microbiol 50:1–9

    CAS  Google Scholar 

  10. Beresford MR, Andrew PW, Shama G (2001) Listeria monocytogenes adheres to many materials found in food-processing environments. J Appl Microbiol 90:1000–1005

    Article  CAS  PubMed  Google Scholar 

  11. Cox LJ, Kleiss T, Cordier JL, Cordellana C, Konkel P, Pedrazzini C, Beumer R, Siebenga A (1989) Listeria spp. in food processing, non-food and domestic environments. Food Microbiol 6:49–61

    Article  Google Scholar 

  12. Beumer RR, te Giffel MC, Spoorenberg E, Rombouts FM (1996) Listeria species in domestic environments. Epidemiol Infect 117:437–442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Azevedo I, Regalo M, Mena C, Almeida G, Ls C, Teixeira P, Hogg T, Gibbs PA (2005) Incidence of Listeria spp. in domestic refrigerators in Portugal. Food Control 16:121–124

    Article  Google Scholar 

  14. Borucki MK, Peppin JD, White D, Loge F, Call DR (2003) Variation in biofilm formation among strains of Listeria monocytogenes. Appl Environ Microbiol 69:7336–7342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Chae MS, Schraft H (2000) Comparative evaluation of adhesion and biofilm formation of different Listeria monocytogenes strains. Int J Food Microbiol 62:103–111

    Article  CAS  PubMed  Google Scholar 

  16. Stepanovic S, Cirkovic I, Ranin L, Svabic-Vlahovic M (2004) Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett Appl Microbiol 38:428–432

    Article  CAS  PubMed  Google Scholar 

  17. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890

    Article  PubMed Central  PubMed  Google Scholar 

  18. Flemming H-C, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells”. J Bacteriol 189:7945–7947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Holah JT, Higgs C, Robinson S, Worthington D, Spenceley H (1990) A conductance-based surface disinfection test for food hygiene. Lett Appl Microbiol 11:255–259

    Article  Google Scholar 

  20. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  PubMed  Google Scholar 

  21. de Beer D, Srinivasan R, Stewart PS (1994) Direct measurement of chlorine penetration into biofilms during disinfection. Appl Environ Microbiol 60:4339–4344

    PubMed Central  PubMed  Google Scholar 

  22. Djordjevic D, Wiedmann M, McLandsborough LA (2002) Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol 68:2950–2958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Folsom JP, Siragusa GR, Frank JF (2006) Formation of biofilm at different nutrient levels by various genotypes of Listeria monocytogenes. J Food Prot 69:826–834

    CAS  PubMed  Google Scholar 

  24. Kim KY, Frank JF (1995) Effect of nutrients on biofilm formation by Listeria monocytogenes on stainless steel. J Food Prot 58:24–28

    Google Scholar 

  25. Blackman IC, Frank JF (1996) Growth of Listeria monocytogenes as a biofilm on various food-processing surfaces. J Food Prot 59:827–831

    Google Scholar 

  26. Moltz AG, Martin SE (2005) Formation of biofilms by Listeria monocytogenes under various growth conditions. J Food Prot 68:92–97

    PubMed  Google Scholar 

  27. Di Bonaventura G, Piccolomini R, Paludi D, D’Orio V, Vergara A, Conter M, Ianieri A (2008) Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity. J Appl Microbiol 104:1552–1561

    Article  PubMed  Google Scholar 

  28. Gião MS, Azevedo NF, Wilks SA, Vieira MJ, Keevil CW (2008) Persistence of Helicobacter pylori in heterotrophic drinking water biofilms. Appl Environ Microbiol 74:5898–5904

    Article  PubMed Central  PubMed  Google Scholar 

  29. Gião M, Wilks S, Azevedo N, Vieira M, Keevil C (2009) Validation of SYTO 9/Propidium Iodide Uptake for Rapid Detection of Viable but Noncultivable Legionella pneumophila. Microb Ecol 58:56–62

    Article  PubMed  Google Scholar 

  30. Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100

    PubMed  Google Scholar 

  31. Keevil CW (2003) Rapid detection of biofilms and adherent pathogens using scanning confocal laser microscopy and episcopic differential interference contrast microscopy. Water Sci Technol 47:105–116

    CAS  PubMed  Google Scholar 

  32. Besnard V, Federighi M, Cappelier JM (2000) Development of a direct viable count procedure for the investigation of VBNC state in Listeria monocytogenes. Lett Appl Microbiol 31:77–81

    Article  CAS  PubMed  Google Scholar 

  33. Besnard V, Federighi M, Cappelier JM (2000) Evidence of viable but non-culturable state in Listeria monocytogenes by direct viable count and CTC-DAPI double staining. Food Microbiol 17:697–704

    Article  Google Scholar 

  34. Mai TL, Conner DE (2007) Effect of temperature and growth media on the attachment of Listeria monocytogenes to stainless steel. Int J Food Microbiol 120:282–286

    Article  CAS  PubMed  Google Scholar 

  35. Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    Article  CAS  PubMed  Google Scholar 

  36. Boulos L, Prevost M, Barbeau B, Coallier J, Desjardins R (1999) LIVE/DEAD(R) BacLight(): application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods 37:77–86

    Article  CAS  PubMed  Google Scholar 

  37. Harmsen M, Lappann M, Knochel S, Molin S (2010) Role of extracellular DNA during biofilm formation by Listeria monocytogenes. Appl Environ Microbiol 76:2271–2279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Vilain S, Brozel VS (2006) Multivariate approach to comparing whole-cell proteomes of Bacillus cereus indicates a biofilm-specific proteome. J Proteome Res 5:1924–1930

    Article  CAS  PubMed  Google Scholar 

  39. Varma PRG, Lyer TSG (1993) Viability of Listeria monocytogenes in water. Fish Technol 30:164–165

    Google Scholar 

  40. Botzler RG, Cowan AB, Wetzler TF (1974) Survival of Listeria monocytogenes in soil and water. J Wildl Dis 10:204–212

    Article  CAS  PubMed  Google Scholar 

  41. Azevedo NF, Almeida C, Fernandes I, Cerqueira L, Dias S, Keevil CW, Vieira MJ (2008) Survival of gastric and enterohepatic Helicobacter spp. in water: Implications for transmission. Appl Environ Microbiol 74:1805–1811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Buswell CM, Herlihy YM, Lawrence LM, McGuiggan JT, Marsh PD, Keevil CW, Leach SA (1998) Extended survival and persistence of Campylobacter spp. in water and aquatic biofilms and their detection by immunofluorescent-antibody and -rRNA staining. Appl Environ Microbiol 64:733–741

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Chae MS, Schraft H (2001) Cell viability of Listeria monocytogenes biofilms. Food Microbiol 18:103–112

    Article  CAS  Google Scholar 

  44. Cappelier JM, Besnard V, Roche S, Garrec N, Zundel E, Velge P, Federighi M (2005) Avirulence of viable but non-culturable Listeria monocytogenes cells demonstrated by in vitro and in vivo models. Vet Res 36:589–599

    Article  PubMed  Google Scholar 

  45. Lindbäck T, Rottenberg ME, Roche SM, Rørvik LM (2010) The ability to enter into an avirulent viable but non-culturable (VBNC) form is widespread among Listeria monocytogenes isolates from salmon, patients and environment. Vet Res 41(1):8

    Article  PubMed  Google Scholar 

  46. Cappelier JM, Besnard V, Roche SM, Velge P, Federighi M (2007) Avirulent viable but non-culturable cells of Listeria monocytogenes need the presence of an embryo to be recovered in egg yolk and regain virulence after recovery. Vet Res 38:573–583

    Article  CAS  PubMed  Google Scholar 

  47. Lindbäck T, Secic I, Rørvik LM (2011) A contingency locus in prfA in a Listeria monocytogenes subgroup allows reactivation of the prfA virulence regulator during infection in mice. Appl Environ Microbiol 77:3478–3483

    Article  PubMed Central  PubMed  Google Scholar 

  48. Chavant P, Martinie B, Meylheuc T, Bellon-Fontaine M-N, Hebraud M (2002) Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Appl Environ Microbiol 68:728–737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Sinde E, Carballo J (2000) Attachment of Salmonella spp. and Listeria monocytogenes to stainless steel, rubber and polytetrafluorethylene: the influence of free energy and the effect of commercial sanitizers. Food Microbiol 17:439–447

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Sonia Porta and Dr. Jose Belenguer from ainia—Centro Tecnologico (Spain)—and Mrs. Nuria de la Fuente and Dr. Enrique Orihuel from Betelgeux, S. L. (Spain) for the technical advice. This work was supported by the European Commission within the Seventh Framework Programme, ‘BioliSME—Speedy system for sampling and detecting Listeria monocytogenes in agri-food and related European industries’, no. FP7-SME-232037. The author is solely responsible for the work. It does not represent the opinion of the community, and the community is not responsible for any use that might be made of data appearing therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria S. Gião.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gião, M.S., Keevil, C.W. Listeria monocytogenes Can Form Biofilms in Tap Water and Enter Into the Viable but Non-Cultivable State. Microb Ecol 67, 603–611 (2014). https://doi.org/10.1007/s00248-013-0364-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0364-3

Keywords

Navigation