Skip to main content

Advertisement

Log in

Dual-species biofilm of Listeria monocytogenes and Escherichia coli on stainless steel surface

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Listeria monocytogenes is a Gram-positive bacterium commonly associated with foodborne diseases. Due its ability to survive under adverse environmental conditions and to form biofilm, this bacterium is a major concern for the food industry, since it can compromise sanitation procedures and increase the risk of post-processing contamination. Little is known about the interaction between L. monocytogenes and Gram-negative bacteria on biofilm formation. Thus, in order to evaluate this interaction, Escherichia coli and L. monocytogenes were tested for their ability to form biofilms together or in monoculture. We also aimed to evaluate the ability of L. monocytogenes 1/2a and its isogenic mutant strain (ΔprfA ΔsigB) to form biofilm in the presence of E. coli. We assessed the importance of the virulence regulators, PrfA and σB, in this process since they are involved in many aspects of L. monocytogenes pathogenicity. Biofilm formation was assessed using stainless steel AISI 304 #4 slides immersed into brain heart infusion broth, reconstituted powder milk and E. coli preconditioned medium at 25 °C. Our results indicated that a higher amount of biofilm was formed by the wild type strain of L. monocytogenes than by its isogenic mutant, indicating that prfA and sigB are important for biofilm development, especially maturation under our experimental conditions. The presence of E. coli or its metabolites in preconditioned medium did not influence biofilm formation by L. monocytogenes. Our results confirm the possibility of concomitant biofilm formation by L. monocytogenes and E. coli, two bacteria of major significance in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abram F, Starr E, Karatzas KA, Matlawska-Wasowska K, Boyd A, Wiedmann M, Boor KJ, Connally D, O’Byrne CP (2008) Identification of components of the sigma B regulon in Listeria monocytogenes that contribute to acid and salt tolerance. Appl Environ Microbiol 74:6848–6858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alavi HED, Hansen LT (2013) Kinetics of biofilm formation and desiccation survival of Listeria monocytogenes in single and dual species biofilms with Pseudomonas fluorescens, Serratia proteamaculans or Shewanella baltica on food-grade stainless steel surfaces. Biofouling 29(10):1253–1268

    Article  Google Scholar 

  • Almeida C, Azevedo NF, Santos S, Keevil CW, Vieira MJ (2011) Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (PNA FISH). PLoS ONE 6(3):e14786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida FA, Pinto UM, Vanetti MCD (2016) Novel insights from molecular docking of SdiA from Salmonella Enteritidis and Escherichia coli with quorum sensing and quorum quenching molecules. Microb Pathog 99:178–190

    Article  PubMed  Google Scholar 

  • Almeida FA, Pimentel-Filho NJ, Pinto UM, Mantovani HC, Oliveira LL, Vanetti MCD (2017) Acyl homoserine lactone-based quorum sensing stimulates biofilm formation by Salmonella Enteritidis in anaerobic conditions. Arch Microbiol 199:475–486

    Article  PubMed  Google Scholar 

  • Aragon-Alegro LC (2007) Influência dos coliformes no comportamento de Listeria monocytogenes em queijo Minas Frescal. São Paulo, 2007. Dissertation, Universidade de São Paulo

  • Bishop DK, Hinrichs DJ (1987) Adoptive transfer of immunity to Listeria monocytogenes. The influence of in vitro stimulation on lymphocyte subset requirements. J Immunol 139:2005–2009

    CAS  PubMed  Google Scholar 

  • Bremer PJ, Monk I, Osborne CM (2001) Survival of Listeria monocytogenes attached to stainless steel surfaces in the presence or absence of Flavobacterium spp. J Food Prot 64(9):1369–1376

    Article  CAS  PubMed  Google Scholar 

  • Buchanan RL, Gorris LGM, Hayman MM, Jackson TC, Whiting RC (2017) A review of Listeria monocytogenes: an update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 75:1–13

    Article  Google Scholar 

  • Campos-Galvão MEM, Ribon AOB, Araújo EF, Vanetti MCD (2015) Changes in the Salmonella enterica Enteritidis phenotypes in presence of acyl homoserine lactone quorum sensing signals. J Basic Microbiol 55:1–9

    Article  Google Scholar 

  • Carpentier B, Chassaing D (2004) Interactions in biofilms between Listeria monocytogenes and resident microorganisms from food industry premises. Int J Food Microbiol 97:111–122

    Article  CAS  PubMed  Google Scholar 

  • Chae MS, Schraft H (2000) Comparative evaluation of adhesion and biofilm formation of different Listeria monocytogenes strains. Int J Food Microbiol 62:103–111

    Article  CAS  PubMed  Google Scholar 

  • Dean SG, Ritchie G (1987) Antibacterial properties of plant essential oils. Int J Food Microbiol 5(2):165–180

    Article  Google Scholar 

  • Eberhard A (1972) Inhibition and activation of bacterial luciferase synthesis. J Bacteriol 109(3):1101–1105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550

    Article  CAS  PubMed  Google Scholar 

  • Ferreira V, Wiedmann M, Teixeira P, Stasiewicz MJ (2014) Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health. J Food Prot 77(1):150–170

    Article  CAS  PubMed  Google Scholar 

  • Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575

    Article  CAS  PubMed  Google Scholar 

  • Giaouris E, Chorianopoulos N, Doulgeraki A, Nychas G-J (2013) Co-culture with Listeria monocytogenes within a dual-species biofilm community strongly increases resistance of Pseudomonas putida to benzalkonium chloride. PLoS ONE 8(10):e77276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaouris E et al (2015) Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front Microbiol 6(841):1–26

    Google Scholar 

  • Gram L, Ravn L, Rasch M, Bruhn JB, Christensen AB, Givskov M (2002) Food spoilage—interactions between food spoilage bacteria. Int J Food Microbiol 78:79–97

    Article  PubMed  Google Scholar 

  • Guerrieri E, Niederhäusern S, Messi P, Sabia C, Iseppi R, Anacarso I, Bondi M (2009) Use of lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes in a small-scale model. Food Control 20:861–865

    Article  CAS  Google Scholar 

  • Heras A, Cain RJ, Bielecka MA, Vázquz-Boland JA (2011) Regulation of Listeria virulence: PrfA master and commander. Curr Opin Microbiol 14:118–127

    Article  PubMed  Google Scholar 

  • Kostaki M, Chorianopoulos N, Braxou E, Nychas G-J, Glaoris E (2012) Differential biofilm formation and chemical disinfection resistance of sessile cells of Listeria monocytogenes strains under monospecies and dual-species (with Salmonella enterica) conditions. Appl Environ Microbiol 78(8):2586–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemon KP, Higgins DE, Kolter R (2007) Flagellar motility is critical for Listeria monocytogenes biofilm formation. J Bacteriol 189(12):4418–4424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemon KP, Freitag NE, Kolter R (2010) The virulence regulator PrfA promotes biofilm formation by Listeria monocytogenes. J Bacteriol 192(15):3969–3976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leriche V, Carpentier B (2000) Limitation of adhesion and growth of Listeria monocytogenes on stainless steel surfaces by Staphylococcus sciuri biofilms. J Appl Microbiol 88:594–605

    Article  CAS  PubMed  Google Scholar 

  • Lou Y, Yousef AH (1999) Characteristics of Listeria monocytogenes important to food processors. In: Ryser ET, Marth EH (eds) Listeria, listeriosis and food safety. Marcel Dekker, New York, pp 134–224

    Google Scholar 

  • Marsh EJ, Luo H, Wang H (2003) A three-tiered approach to differentiate Listeria monocytogenes biofilm-forming abilities. FEMS Microbiol Lett 228:203–210

    Article  PubMed  Google Scholar 

  • Mcgann P, Wiedmann M, Boor KJ (2007) The alternative sigma factor sigma B and the virulence gene regulator PrfA both regulate transcription of Listeria monocytogenes internalins. Appl Environ Microbiol 73:2919–2930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Midelet G, Kobilinsky A, Carpentier B (2006) Construction and analysis of fractional multifactorial designs to study attachment strength and transfer of Listeria monocytogenes from pure or mixed biofilms after contactwith a solid model food. Appl Environ Microbiol 72:2313–2321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minei CC, Gomes BC, Ratti RP, D´Angelis CEM, De Martinis ECP (2008) Influence of peroxyacetic acid, nisin and co-culture with Enterococcus faecium on Listeria monocytogenes biofilm formation. J Food Prot 71:634–638

    Article  PubMed  Google Scholar 

  • Ollinger J, Wiedmann M. Boor KJ (2008) SigmaB- and PrfA-dependent transcription of genes previously classified as putative constituents of the Listeria monocytogenes PrfA regulon. Foodborne Pathog Dis 5:281–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orgaz B, Puga CH, Martínez-Suárez JV, SanJose C (2013) Biofilm recovery from chitosan action: a possible clue to understand Listeria monocytogenes persistence in food plants. Food Control 32(2):484–489

    Article  CAS  Google Scholar 

  • Orsi RH, den Bakker HC, Wiedmann M (2011) Listeria monocytogenes lineages: genomics, evolution, ecology, and phenotypic characteristics. Int J Med Microbiol 301:79–96

    Article  CAS  PubMed  Google Scholar 

  • Pereira CS, Thompson JA, Xavier KB (2012) AI-2-mediated signalling in bacteria. FEMS Microbiol Rev 37:156–181

    Article  PubMed  Google Scholar 

  • Persat et al (2015) The mechanical world of bacteria. Cell 161:988–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radoshevich L, Cossart P (2018) Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol 16:32–46

    Article  CAS  PubMed  Google Scholar 

  • Raengpradub S, Wiedmann M, Boor KJ (2008) Comparative analysis of the sigma B-dependent stress responses in Listeria monocytogenes and Listeria innocua strains exposed to selected stress conditions. Appl Environ Microbiol 74:158–171

    Article  CAS  PubMed  Google Scholar 

  • Renier S, Hébraud M, Desvaux M (2011) Molecular biology of surface colonization by Listeria monocytogenes: an additional facet of an opportunistic Gram-positive foodborne pathogen. Environ Microbiol 13(3):835–850

    Article  CAS  PubMed  Google Scholar 

  • Rieu A, Lemaître JP, Guzzo J, Piveteau P (2008) Interactions in dual species biofilms between Listeria monocytogenes EGD-e and several strains of Staphylococcus aureus. Int J Food Microbiol 126:76–82

    Article  CAS  PubMed  Google Scholar 

  • Tagg JR, Dajani AS, Wannamaker L (1976) Bacteriocins of gram-positive bacteria. Bacteriol Rev 40(3):722–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Veen S, Abee T (2010) Importance of SigB for Listeria monocytogenes static and continuous-flow biofilm formation and disinfectant resistance. Appl Environ Microbiol 76(23):7854–7860

    Article  PubMed  PubMed Central  Google Scholar 

  • Winkelstroter LK, Gomes BC, Thomaz MRS, Souza VM, De Martinis ECP (2011) Lactobacillus sakei 1 and its bacteriocin influence adhesion of Listeria monocytogenes on stainless steel surface. Food Control 22:1404–1407

    Article  Google Scholar 

  • Winson et al (1998) Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163:185–192

    Article  CAS  PubMed  Google Scholar 

  • Xavier KB, Bassler B (2005) Interference with AI-2-mediated bacterial cell-cell communication. Nature 437:750–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao T, Doyle MP, Zhao P (2004) Control of Listeria monocytogenes in a biofilm by competitive-exclusion microorganisms. Appl Environ Microbiol 70(7):3996–4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao T, Podtburg TC, Zhao P, Chen D, Baker DA, Cords B, Doyle MP (2013) Reduction by competitive bacteria of Listeria monocytogenes in biofilms and Listeria bacteria in floor drains in a ready-to-eat poultry processing plant. J Food Prot 76(4):601–607

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

UMP acknowledges a grand support for this project from CNPq-Brazil (Process 457794/2014-3) and the Food Research Center (FAPESP 2013/07914-8); AZG acknowledges CAPES for the fellowship and MTD FAPESP for grant support (Process 2011/18033-7).

Author information

Authors and Affiliations

Authors

Contributions

AZG designed and performed experiments. MTD advised the study and revised the manuscript. UMP analyzed and interpreted the results and wrote the manuscript.

Corresponding author

Correspondence to Uelinton Manoel Pinto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Grandi, A.Z., Pinto, U.M. & Destro, M.T. Dual-species biofilm of Listeria monocytogenes and Escherichia coli on stainless steel surface. World J Microbiol Biotechnol 34, 61 (2018). https://doi.org/10.1007/s11274-018-2445-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-018-2445-4

Keywords

Navigation