Skip to main content
Log in

Biogeography and Host Fidelity of Bacterial Communities in Ircinia spp. from the Bahamas

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Research on sponge microbial assemblages has revealed different trends in the geographic variability and specificity of bacterial symbionts. Here, we combined replicated terminal-restriction fragment length polymorphism (T-RFLP) and clone library analyses of 16S rRNA gene sequences to investigate the biogeographic and host-specific structure of bacterial communities in two congeneric and sympatric sponges: Ircinia strobilina, two color morphs of Ircinia felix and ambient seawater. Samples were collected from five islands of the Bahamas separated by 80 to 400 km. T-RFLP profiles revealed significant differences in bacterial community structure among sponge hosts and ambient bacterioplankton. Pairwise statistical comparisons of clone libraries confirmed the specificity of the bacterial assemblages to each host species and differentiated symbiont communities between color morphs of I. felix. Overall, differences in bacterial communities within each host species and morph were unrelated to location. Our results show a high degree of symbiont fidelity to host sponge across a spatial scale of up to 400 km, suggesting that host-specific rather than biogeographic factors play a primary role in structuring and maintaining sponge–bacteria relationships in Ircinia species from the Bahamas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdo Z, Schuette U, Bent S, Williams C, Forney L, Joyce P (2006) Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ Microbiol 8(5):929–938

    Article  PubMed  Google Scholar 

  2. Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42

    Google Scholar 

  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  4. Anderson SA, Northcote PT, Page MJ (2010) Spatial and temporal variability of the bacterial community in different chemotypes of the New Zealand marine sponge Mycale hentscheli. FEMS Microbiol Ecol 72:328–342

    Article  PubMed  CAS  Google Scholar 

  5. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29(4):1165–1188

    Article  Google Scholar 

  6. Clarke KR, Gorley RN (2006) PRIMERv6: User manual/Tutorial. PRIMER-E, Plymouth

    Google Scholar 

  7. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18(1):117–143

    Article  Google Scholar 

  8. Cole JR, Chai B, Farris FJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM (2007) The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35:D169–D172

    Article  PubMed  CAS  Google Scholar 

  9. Colin PL (1995) Surface currents in Exuma Sound, Bahamas and adjacent areas with reference to potential larval transport. Bull Mar Sci 56(1):48–57

    Google Scholar 

  10. Culman SW, Bukowski R, Gauch HG, Cadillo-Quiroz H, Buckley DH (2009) T-REX: software for the processing and analysis of T-RFLP data. BMC Bioinforma 10:171–180

    Article  Google Scholar 

  11. Diaz MC, Rützler K (2001) Sponges: an essential component of Caribbean coral reefs. Bull Mar Sci 69(2):535–546

    Google Scholar 

  12. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22(4):1–20

    Google Scholar 

  13. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2011) Geneious v5.4, available from http://www.geneious.com

  14. Duque C, Bonilla A, Bautista E, Zea S (2001) Exudation of low molecular weight compounds (thiobismethane, methyl isocyanide, and methyl isothiocyanate) as a possible chemical defense mechanism in the marine sponge Ircinia felix. Biochem Syst Ecol 29:459–467

    Article  PubMed  CAS  Google Scholar 

  15. Ereskovsky A, Gonobobleva E, Vishnyakov A (2005) Morphological evidence for vertical transmission of symbiotic bacteria in the viviparous sponge Halisarca dujardini Johnston (Porifera, Demospongiae, Halisarcida). Mar Biol 146:869–875

    Article  Google Scholar 

  16. Erpenbeck D, Voigt O, Wörheide G, Lavrov DV (2009) The mitochondrial genomes of sponges provide evidence for multiple invasions by Repetitive Hairpin-forming Elements (RHE). BMC Genomics 10:591–604

    Article  PubMed  Google Scholar 

  17. Erpenbeck D, Hooper JNA, Wörheide G (2006) CO1 phylogenies in diploblasts and the "Barcoding of Life"-are we sequencing a suboptimal portion? Mol Ecol Notes 6:550–553

    Article  CAS  Google Scholar 

  18. Erpenbeck D, Breeuwer JAJ, van der Velde HC, van Soest RWM (2002) Unravelling host and symbiont phylogenies of halichondrid sponges (Demospongiae, Porifera) using a mitochondrial marker. Mar Biol 141:377–386

    Article  Google Scholar 

  19. Erwin PM, Pita L, López-Legentil S, Turon X (2012) Temporal variation in the sponge microbiota: symbiont stability over large seasonal shifts in temperature and irradiance. Appl Environ Microb 78(20):7358–7368

    Article  CAS  Google Scholar 

  20. Erwin PM, López-Legentil S, Turon X (2012) Ultrastructure, molecular phylogenetics, and chlorophyll a content of novel cyanobacterial symbionts in temperate sponges. Microb Ecol 64:771–783

    Article  PubMed  CAS  Google Scholar 

  21. Erwin PM, López-Legentil S, González-Pech R, Turon X (2012) A specific mix of generalists: bacterial symbionts in Mediterranean Ircinia spp. FEMS Microbiol Ecol 79(3):619–637

    Article  PubMed  CAS  Google Scholar 

  22. Erwin PM, Olson JB, Thacker RW (2011) Phylogenetic diversity, host-specificity and community profiling of sponge-associated bacteria in the northern Gulf of Mexico. PLoS One 6(11):e26806

    Article  PubMed  CAS  Google Scholar 

  23. Erwin PM, López-Legentil S, Schuhmann PW (2010) The pharmaceutical value of marine biodiversity for anti-cancer drug discovery. Ecol Econ 70(2):445–451

    Article  Google Scholar 

  24. Erwin PM, Thacker RW (2008) Phototrophic nutrition and symbiont diversity of two Caribbean sponge-cyanobacteria symbioses. Mar Ecol Prog Ser 362:139–147

    Article  CAS  Google Scholar 

  25. Erwin PM, Thacker RW (2007) Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge assemblages. J Mar Biol Assoc UK 87:1683–1692

    Article  CAS  Google Scholar 

  26. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  27. Fieseler L, Horn M, Wagner M, Hentschel U (2004) Discovery of the novel candidate phylum "Poribacteria" in marine sponges. Appl Environ Microb 70(6):3724–3732

    Article  CAS  Google Scholar 

  28. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    PubMed  CAS  Google Scholar 

  29. Gili J, Coma R (1998) Benthic suspension feeders: their paramount role in littoral marine food webs. Tree 13(8):316–321

    PubMed  CAS  Google Scholar 

  30. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10(7):497–506

    PubMed  CAS  Google Scholar 

  31. Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177

    Article  PubMed  CAS  Google Scholar 

  32. Hentschel U, Hopke J, Horn M, Friedrich A, Wagner M, Hacker J, Moore B (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microb 68(9):4431–4440

    Article  CAS  Google Scholar 

  33. Herbert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270:313–321

    Article  Google Scholar 

  34. Hill M, Hill A, Lopez N, Harriott O (2006) Sponge-specific bacterial symbionts in the Caribbean sponge, Chondrilla nucula (Demospongiae, Chondrosida). Mar Biol 148:1221–1230

    Article  Google Scholar 

  35. Kent AD, Smith DJ, Benson BJ, Triplett EW (2003) Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Appl Environ Microb 69(11):6768–6776

    Article  CAS  Google Scholar 

  36. Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A, Qian P (2010) Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J 5:650–664

    Article  PubMed  Google Scholar 

  37. Lee OO, Chui P, Wong YH, Pawlik JR, Qian P (2009) Evidence for vertical transmission of bacterial symbionts from adult to embryo in the Caribbean sponge Svenzea zeai. Appl Environ Microb 75(19):6147–6156

    Article  CAS  Google Scholar 

  38. Lee OO, Wong YH, Qian P (2009) Inter- and intraspecific variations of bacterial communities associated with marine sponges from San Juan Island, Washington. Appl Environ Microb 75(11):3513–3521

    Article  CAS  Google Scholar 

  39. López-Legentil S, Song B, Bosch M, Pawlik JR, Turon X (2011) Cyanobacterial diversity and a new Acaryochloris-like symbiont from Bahamian sea-squirts. PLoS One 6(8):e23938

    Article  PubMed  Google Scholar 

  40. López-Legentil S, Erwin PM, Pawlik JR, Song B (2010) Effects of sponge bleaching on ammonia-oxidizing Archaea: distribution and relative expression of ammonia monooxygenase genes associated with the barrel sponge Xestospongia muta. Microb Ecol 60(3):561–571

    Article  PubMed  Google Scholar 

  41. Maldonado M, Young CM (1998) Limits on the bathymetric distribution of keratose sponges: a field test in deep water. Mar Ecol Prog Ser 174:123–139

    Article  Google Scholar 

  42. Martínez-Murcia AJ, Acinas SG, Rodríguez-Valera F (1995) Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments. FEMS Microbiol Ecol 17(4):247–255

    Article  Google Scholar 

  43. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M et al (2006) Microbial biogeography: Putting microorganisms on the map. Nat Rev Microbiol 4(2):102–112

    Article  PubMed  CAS  Google Scholar 

  44. Meyer CP, Geller JB, Paulay G (2005) Fine scale endemism on coral reefs: archipelagic differentiation in turbinid gastropods. Evolution 59:113–125

    PubMed  Google Scholar 

  45. Mohamed NM, Coman AS, Tal Y, Hill RT (2008) Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges. Environ Microbiol 10(11):2910–2921

    Article  PubMed  CAS  Google Scholar 

  46. Mohamed NVR, Hamann M, Kelly M, Hill RT (2008) Monitoring bacterial diversity of the marine sponge Ircinia strobilina upon transfer into aquaculture. Appl Environ Microb 74(13):4133–4143

    Article  CAS  Google Scholar 

  47. Montalvo N, Hill RT (2011) Sponge-associated bacteria are strictly maintained in two closely related but geographically distant sponge hosts. Appl Environ Microb 77(20):7207–7216

    Article  CAS  Google Scholar 

  48. Morrow KM, Moss AG, Chadwick NE, Liles MR (2012) Bacterial associates of two Caribbean coral species reveal species-specific distribution and geographic variability. Appl Environ Microb 78(18):6438–6449

    Article  CAS  Google Scholar 

  49. Muscholl-Silberhorn A, Thiel V, Imhoff JF (2008) Abundance and bioactivity of cultured sponge-associated bacteria from the Mediterranean Sea. Microb Ecol 55(1):94–106

    Article  PubMed  Google Scholar 

  50. Newman D, Hill RT (2006) New drugs from marina microbes: the tide is turning. J Ind Microbiol Biotechnol 33:539–544

    Article  PubMed  CAS  Google Scholar 

  51. Parra-Velandia F, Zea S (2003) Comparación de la abundancia y distribución de algunas características de las esponjas del género Ircinia (Porifera: Demospongiae) en dos localidades contrastantes del área de Santa Marta, Caribe colombiano. Bol Invest Mar Cost 32:75–91

    Google Scholar 

  52. Paul V, Ritson-Williams R (2008) Marine chemical ecology. Nat Prod Rep 25(4):662–695

    Article  PubMed  CAS  Google Scholar 

  53. Pawlik JR, McFall G, Zea S (2002) Does the odor from sponges of the genus Ircinia protect them from fish predators? J Chem Ecol 28(6):1103–1115

    Article  PubMed  CAS  Google Scholar 

  54. Pile A (1997) Finding Reiswig's missing carbon: quantification of sponge feeding using dual-beam flow Cytometry. Proc 8th Int Coral Reef Sym 2:1403–1410

    CAS  Google Scholar 

  55. Pöppe J, Sutcliffe P, Hooper JNA, Wörheide G, Erpenbeck D (2010) CO1 Barcoding reveals new clades and radiation patterns of Indo-Pacific sponges of the family Irciniidae (Demospongiae: Dictyoceratida). PLoS One 5(4):e9950

    Article  PubMed  Google Scholar 

  56. R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria, available from http://www.R-project.org

  57. Ribes M, Jiménez E, Yahel G, López-Sendino P, Diez B, Massana R, Sharp J, Coma R (2012) Functional convergence of microbes associated with temperate marine sponges. Environ Microbiol 14(5):1224–1239

    Article  PubMed  CAS  Google Scholar 

  58. Rot C, Goldfarb I, Ilan M, Huchon D (2006) Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria. BMC Evol Biol 6:71–81

    Article  PubMed  Google Scholar 

  59. Sarà M (1971) Ultrastructural aspects of the symbiosis between two species of the genus Aphanocapsa (Cyanophyceae) and Ircinia variabilis (Demospongiae). Mar Biol 11:214–221

    Article  Google Scholar 

  60. Schloss P, Westcott S, Ryabin T, Hall J, Hartmann M, Hollister E, Lesniewski R, Oakley B, Parks D, Robinson C, Sahl J, Stres B, Thallinger G, Van Horn D, Weber C (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microb 75(23):7537–7541

    Article  CAS  Google Scholar 

  61. Schmahl GP (1990) Community structure and ecology of sponges associated with four Southern Florida coral reefs. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington, pp 376–383

    Google Scholar 

  62. Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, Perez T, Rodrigo A, Schupp P, Vacelet J, Webster NS, Hentschel U, Taylor MW (2012) Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6:564–576

    Article  PubMed  CAS  Google Scholar 

  63. Schmitt S, Angermeier H, Schiller R, Lindquist N, Hentschel U (2008) Molecular microbial diversity survey of sponge reproductive stages and mechanistic insights into vertical transmission of microbial symbionts. Appl Environ Microb 74(24):7694–7708

    Article  CAS  Google Scholar 

  64. Schmitt S, Weisz J, Lindquist N, Hentschel U (2007) Vertical transmission of a phylogenetically complex microbial consortium in the viviparous sponge Ircinia felix. Appl Environ Microb 73(7):2067–2078

    Article  CAS  Google Scholar 

  65. Sokal RR, Rohl FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman, New York

    Google Scholar 

  66. Southwell MW, Weisz JB, Martens CS, Lindquist N (2008) In situ fluxes of dissolved inorganic nitrogen from the sponge community on Conch Reef, Key Largo, Florida. Limnol Oceanogr 53(3):986–996

    Article  CAS  Google Scholar 

  67. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690

    Article  PubMed  CAS  Google Scholar 

  68. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed  CAS  Google Scholar 

  69. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura RM (ed) Some mathematical questions in biology-DNA sequence analysis. Am Math Soc, Providence, pp 57–86

    Google Scholar 

  70. Taylor MW, Schupp P, de Nys R, Kjelleberg S, Steinberg P (2005) Biogeography of bacteria associated with the marine sponge Cymbastela concentrica. Environ Microbiol 7(3):419–433

    Article  PubMed  CAS  Google Scholar 

  71. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71(2):295–347

    Article  PubMed  CAS  Google Scholar 

  72. Taylor MW, Schupp P, Dahllof I, Kjelleberg S, Steinberg PD (2004) Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6(2):121–130

    Article  PubMed  Google Scholar 

  73. Thacker RW, Freeman CJ (2012) Sponge-microbe symbioses: recent advances and new directions. Adv Mar Biol 62:57–111

    Article  PubMed  Google Scholar 

  74. Thacker RW, Starnes S (2003) Host specificity of the symbiotic cyanobacterium Oscillatoria spongeliae in marine sponges, Dysidea spp. Mar Biol 142:643–648

    CAS  Google Scholar 

  75. Thiel V, Leininger S, Schmaljohann R, Brümmer F, Imhoff J (2007) Sponge-specific bacterial associations of the Mediterranean sponge Chondrilla nucula (Demospongiae, Tetractinomorpha). Microb Ecol 54:101–111

    Article  PubMed  Google Scholar 

  76. Thompson J, Gibson T, Plewniak F, Jeanmougin F, Higgins D (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignments aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  77. Turner S, Pryer KM, Miao VPW, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46(4):327–338

    Article  PubMed  CAS  Google Scholar 

  78. Usher KM, Toze S, Fromont J, Kuo J, Sutton DC (2004) A new species of cyanobacterial symbiont from the marine sponge Chondrilla nucula. Symbiosis 36:183–192

    CAS  Google Scholar 

  79. Usher KM, Kuo J, Fromont J, Sutton DC (2001) Vertical transmission of cyanobacterial symbionts in the marine sponge Chondrilla australiensis (Demospongiae). Hydrobiologia 461:15–23

    Article  Google Scholar 

  80. Van Soest RWM, Boury-Esnault N, Vacelet J, Dohrmann M, Erpenbeck D, De Voogd NJ, Santodomingo N, Vanhoorne B, Kelly M, Hooper JNA (2012) Global diversity of sponges (Porifera). PLoS One 7(4):e35105

    Article  PubMed  Google Scholar 

  81. Webster NS, Taylor MW, Behnam F, Lucker S, Rattei T, Whalan S (2010) Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol 12(8):2070–2082

    PubMed  CAS  Google Scholar 

  82. Webster NS, Negri A, Munro M, Battershill C (2004) Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6(3):288–300

    Article  PubMed  Google Scholar 

  83. Webster NS, Taylor MW (2011) Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 14(2):335–346

    Article  PubMed  Google Scholar 

  84. Webster NS, Hill RT (2001) The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an alpha-proteobacterium. Mar Biol 138:843–851

    Article  CAS  Google Scholar 

  85. Wichels A, Würtz S, Döpke H, Schütt C, Gerdts G (2006) Bacterial diversity in the breadcrumb sponge Halichondria panicea (Pallas). FEMS Microbiol Ecol 56:102–118

    Article  PubMed  CAS  Google Scholar 

  86. Yang J, Sun J, Lee OO, Wong YH, Qian P (2011) Phylogenetic diversity and community structure of sponge-associated bacteria from mangroves of the Caribbean Sea. Aquat Microb Ecol 62:231–240

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Spanish Government project CTM2010-17755, the Catalan Government grant 2009SGR-484 for Consolidated Research Groups, the US National Science Foundation under grant 0853089, and a FI-DGR fellowship to LP. Joseph R. Pawlik (University of North Carolina Wilmington, USA) financed usage of the UNOLS research vessel Walton Smith with the US National Science Foundation grant OCE 0550468.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick M. Erwin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 8962 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pita, L., López-Legentil, S. & Erwin, P.M. Biogeography and Host Fidelity of Bacterial Communities in Ircinia spp. from the Bahamas. Microb Ecol 66, 437–447 (2013). https://doi.org/10.1007/s00248-013-0215-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0215-2

Keywords

Navigation