Skip to main content

Advertisement

Log in

New drugs from marine microbes: the tide is turning

  • Review
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

This is a mini-review demonstrating that investigation of the genomics of marine microbes from all three domains has the potential to revolutionize the search for secondary metabolites originally thought to be the product of marine invertebrates. The basis for the review was a symposium at the 2005 Annual Meeting of the SIM covering some aspects of the potential for marine microbes to be the primary producers of such metabolites. The work reported at that symposium has been integrated into a fuller discussion of current published literature on the subject with examples drawn from bacteria, cyanophytes and fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bok JW, Hoffmeister D, Maggio-Hall LA, Murillo R, Glasner JD, Keller NP (2006) Genomic mining for Aspergillus natural products. Chem Biol 13:31–37

    Article  PubMed  CAS  Google Scholar 

  2. Challis G, Ravel J, Townsend C (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7:211–224

    Article  PubMed  CAS  Google Scholar 

  3. Claeson P, Goransson U, Johansson S, Luijendijk T, Bohlin L (1998) Fractionation protocol for the isolation of polypeptides from plant biomass. J Nat Prod 61:77–81

    Article  PubMed  CAS  Google Scholar 

  4. de la Torre JR, Christianson LM, Beja O, Suzuki MT, Karl DM, Heidelberg JF, DeLong EF (2003) Proteorhodopsin genes are distributed among divergent marine bacterial taxa. Proc Natl Acad Sci USA 100:12830–12835

    Article  PubMed  CAS  Google Scholar 

  5. Degnan BM, Hawkins CJ, Lavin MF, McCaffrey EJ, Parry DL, Ven den Brenk AL, Watters DJ (1989) New cyclic peptides with cytotoxic activity from the ascidian Lissoclinum patella. J Med Chem 32:1349–1354

    Article  PubMed  CAS  Google Scholar 

  6. Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PJ, Fenical W (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew Chem 42:355–357

    Article  CAS  Google Scholar 

  7. Fieseler L, Horn M, Wagner M, Hentschel U (2004) Discovery of the novel candidate phylum “Poribacteria” in marine sponges. Appl Environ Microbiol 70:3724–3732

    Article  PubMed  CAS  Google Scholar 

  8. Fortman JL, Magarvey NA, Sherman DH (2005) Something old, something new: ongoing studies of marine actinomycetes. Proc 2005 SIM Mtg Abst S86

  9. Heidelberg JF (2005) Exploring the genomic potential of uncultured microorganisms. Proc 2005 SIM Mtg Abst S89

  10. Hentschel U, Fieseler L, Wehrl M, Steinert M, Hacker J, Horn M (2003) Microbial diversity of marine sponges. Prog Mol Subcell Biol 37:59–88

    PubMed  CAS  Google Scholar 

  11. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  PubMed  CAS  Google Scholar 

  12. Jensen PR, Williams PG, Mafnas C, Fenical W (2005) Marine actinomycetes. Proc 2005 SIM Mtg Abst S86

  13. Kim TK, Garson MJ, Fuerst JA (2005) Marine actinomycetes related to the Salinospora group from the Great Barrier Reef sponge Pseudoceratina clavata. Environ Microbiol 7:509–518

    Article  PubMed  CAS  Google Scholar 

  14. Konig GM, Kehraus S, Seibert SF, Abdel-Lateff A, Muller D (2006) Natural products from marine organisms and their associated microbes. ChemBioChem 7:229–238

    Article  PubMed  CAS  Google Scholar 

  15. Li Y-M, Milne JC, Madison LL, Kolter R, Walsh CT (1996) From peptide precursors to oxazole and thiazole-containing peptide antibiotics: microcin B17 synthase. Science 274:1188–1193

    Article  PubMed  CAS  Google Scholar 

  16. Lombo F, Velasco A, Castro A, de la Calle F, Brana AF, Sanchez-Puelles JM, Mendez C, Salas JA (2006) Deciphering the biosynthesis pathway of the antitumor thiocoraline from a marine actinomycete and its expression in two Streptomycete species. ChemBioChem 7:366–376

    Article  PubMed  CAS  Google Scholar 

  17. Long PF, Dunlap WC, Battershill CN, Jaspars M (2005) Shotgun cloning and heterologous expression of the patellamide gene cluster as a strategy for achieving sustained metaboite production. ChemBioChem 6:1760–1765

    Article  PubMed  CAS  Google Scholar 

  18. Macherla VR, Mitchell SS, Manam RR, Reed KA, Chao T-H, Nicholson B, Deyanat-Yazdi G, Mai B, Jensen PR, Fenical WF, Neuteboom STC, Lam KS, Palladino MA, Potts BCM (2005) Structure-activity relationship studies of salinosporamide A (NPI-0052), a novel marine derived proteasome inhibitor. J Med Chem 48:3694–3687

    Article  CAS  Google Scholar 

  19. Magarvey NA, Keller JM, Bernan V, Dworkin M, Sherman DH (2004) Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites. Appl Environ Microbiol 70:7520–7529

    Article  PubMed  CAS  Google Scholar 

  20. Maldonado LA, Fenical W, Jensen PJ, Kauffman CA, Mincer TJ, Ward AC, Bull AT, Goodfellow M (2005) Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. Int J Syst Evol Microbiol 55:1759–1766

    Article  PubMed  CAS  Google Scholar 

  21. McAlpine JB, Bachmann BO, Piraee M, Tremblay S, Alarco A-M, Zazapoulos E, Farnet CM (2005) Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. J Nat Prod 2005:493–496

    Article  CAS  Google Scholar 

  22. Mydlarz LD, Jacobs RS, Boehnlein J, Kerr RG (2003) Pseudopterosin biosynthesis in Symbiodinium sp., the dinoflagellate symbiont of Pseudopterogorgia elisabethae. Chem Biol 10:1051–1056

    Article  PubMed  CAS  Google Scholar 

  23. Newberger N, Saleh M, Kerr RG (2005) Development of production methods for coral-derived natural products. Proc 2005 SIM Mtg Abst S87

  24. Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67:1216–1238

    Article  PubMed  CAS  Google Scholar 

  25. Page M, West L, Northcote P, Battershill C, Kelly M (2005) Spatial and temporal variability of cytotoxic metabolites in populations of the New Zealand sponge Mycale hentscheli. J Chem Ecol 31:1161–1174

    Article  PubMed  CAS  Google Scholar 

  26. Perry NB, Blunt JW, Munro MHG, Pannell LK (1988) Mycalamide A, an antiviral compound from a New Zealand sponge of genus Mycale. J Am Chem Soc 110:4850–4851

    Article  CAS  Google Scholar 

  27. Piel J, Butzke D, Fusetani N, Hui D, Platzer M, Wen G, Matsunaga S (2005) Exploring the chemistry of uncultivated bacterial symbionts: antitumor polyketides of the pederin family. J Nat Prod 68:472–479

    Article  PubMed  CAS  Google Scholar 

  28. Salomon CE, Faulkner DJ (2002) Localization studies of bioactive cyclic peptides in the ascidian Lissoclinum patella. J Nat Prod 65:689–692

    Article  PubMed  CAS  Google Scholar 

  29. Schirmer A, Gadkari R, Reeves CD, Ibrahim F, DeLong EF, Hutchinson CR (2005) Metagenomic analysis reveals diverse polysynthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl Environ Microbiol 71:4840–4849

    Article  PubMed  CAS  Google Scholar 

  30. Schmidt EW (2005) Prochloron didemni, a model obligate symbiont for biosynthetic and genomic studies. Proc 2005 SIM Mtg Abst S88

  31. Schmidt EW, Nelson JT, Rasko DA, Sudek S, Eisen JA, Haygood MG, Ravel J (2005) Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc Natl Acad Sci USA 102:7315–7320

    Article  CAS  Google Scholar 

  32. Sfanos K, Harmody D, Dang P, Ledger A, Pomponi S, McCarthy P, Lopez J (2005) A molecular systematic survey of cultured microbial associates of deep water marine invertebrates. Syst Appl Microbiol 28:242–264

    Article  PubMed  CAS  Google Scholar 

  33. Sings HL, Rinehart KL (1996) Compounds produced from potential tunicate-blue-green algal symbiosis: a review. J Ind Microbiol Biotechnol 17:385–396

    Article  CAS  Google Scholar 

  34. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y-H, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  PubMed  Google Scholar 

  35. Webster NS, Wilson KJ, Blackall LL, Hill RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444

    Article  PubMed  CAS  Google Scholar 

  36. Williams PG, Buchanan GO, Feling RH, Kauffman CA, Jensen PJ, Fenical W (2005) New cytotoxic salinosporamides from the marine actinomycete Salinispora tropica. J Org Chem 70:6196–6203

    Article  PubMed  CAS  Google Scholar 

  37. Wilson K-A, Kalkum M, Ottesen J, Yuzenkova J, Chait BT, Landick R, Muir T, Severinov K, Darst SA (2003) Structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. J Am Chem Soc 125:12475–12483

    Article  PubMed  CAS  Google Scholar 

  38. Yorgey P, Lee J, Kordel J, Vivas E, Warner P, Jebaratnam D, Kolter R (1994) Posttranslational modifications in microcin B17 define an additional class of DNA gyrase inhibitor. Proc Natl Acad Sci USA 91:4519–4523

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Russell T. Hill gratefully acknowledges funding from the Microbial Observatories Program, National Science Foundation (MCB-0238515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Newman.

Additional information

Contribution No. 05-140 from the Center of Marine Biotechnology.

D.J. Newman and R.T. Hill contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newman, D.J., Hill, R.T. New drugs from marine microbes: the tide is turning. J IND MICROBIOL BIOTECHNOL 33, 539–544 (2006). https://doi.org/10.1007/s10295-006-0115-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-006-0115-2

Keywords

Navigation