Skip to main content

Advertisement

Log in

Fitness Factors in Vibrios: a Mini-review

  • Minireviews
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Vibrios are Gram-negative curved bacilli that occur naturally in marine, estuarine, and freshwater systems. Some species include human and animal pathogens, and some vibrios are necessary for natural systems, including the carbon cycle and osmoregulation. Countless in vivo and in vitro studies have examined the interactions between vibrios and their environment, including molecules, cells, whole animals, and abiotic substrates. Many studies have characterized virulence factors, attachment factors, regulatory factors, and antimicrobial resistance factors, and most of these factors impact the organism's fitness regardless of its external environment. This review aims to identify common attributes among factors that increase fitness in various environments, regardless of whether the environment is an oyster, a rabbit, a flask of immortalized mammalian cells, or a planktonic chitin particle. This review aims to summarize findings published thus far to encapsulate some of the basic similarities among the many vibrio fitness factors and how they frame our understanding of vibrio ecology. Factors representing these similarities include hemolysins, capsular polysaccharides, flagella, proteases, attachment factors, type III secretion systems, chitin binding proteins, iron acquisition systems, and colonization factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aeckersberg F, Lupp C, Feliciano B, Ruby EG (2001) Vibrio fischeri outer membrane protein OmpU plays a role in normal symbiotic colonization. J Bacteriol 183:6590–6597

    Article  PubMed  CAS  Google Scholar 

  2. Aktories K, Lang AE, Schwan C, Mannherz HG (2011) Actin as target for modification by bacterial protein toxins. FEBS J 278:4526–4543

    Article  PubMed  CAS  Google Scholar 

  3. Alam M, Sultana M, Nair GB, Siddique AK, Hasan NA, Sack RB, Sack DA, Ahmed KU, Sadique A, Watanabe H, Grim CJ, Huq A, Colwell RR (2007) Viable but nonculturable Vibrio cholerae O1 in biofilms in the aquatic environment and their role in cholera transmission. Proc Natl Acad Sci U S A 104:17801–17806

    Article  PubMed  CAS  Google Scholar 

  4. Andersson DI (2003) Persistence of antibiotic resistant bacteria. Curr Opin Microbiol 6:452–456

    Article  PubMed  CAS  Google Scholar 

  5. Arnosti C (2011) Microbial extracellular enzymes and the marine carbon cycle. Ann Rev Mar Sci 3:401–425

    Article  PubMed  Google Scholar 

  6. Asplund ME, Rehnstam-Holm A-S, Atnur V, Raghunath P, Saravanan V, Härnström K, Collin B, Karunasagar I, Godhe A (2011) Water column dynamics of Vibrio in relation to phytoplankton community composition and environmental conditions in a tropical coastal area. Environ Microbiol 13:2738–2751

    Article  PubMed  Google Scholar 

  7. Austin B (2010) Vibrios as causal agents of zoonoses. Vet Microbiol 140:310–317

    Article  PubMed  CAS  Google Scholar 

  8. Bachère E, Gueguen Y, Gonzalez M, De Lorgeril J, Garnier J, Romestand B (2004) Insights into the anti-microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas. Immunol Rev 198:149–168

    Article  PubMed  Google Scholar 

  9. Baffone W, Citterio B, Vittoria E, Casaroli A, Campana R, Falzano L, Donelli G (2003) Retention of virulence in viable but non-culturable halophilic Vibrio spp. Int J Food Microbiol 89:31–39

    Article  PubMed  CAS  Google Scholar 

  10. Bassler BL, Greenberg EP, Stevens AM (1997) Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J Bacteriol 179:4043–4045

    PubMed  CAS  Google Scholar 

  11. Baya AM, Brayton PR, Brown VL, Grimes DJ, Russek-Cohen E, Colwell RR (1986) Coincident plasmids and antimicrobial resistance in marine bacteria isolated from polluted and unpolluted Atlantic Ocean samples. Appl Environ Microbiol 51:1285–1292

    PubMed  CAS  Google Scholar 

  12. Ben Kahla-Nakbi A, Chaieb K, Bakhrouf A (2009) Investigation of several virulence properties among Vibrio alginolyticus strains isolated from diseased cultured fish in Tunisia. Dis Aquat Org 86:21–28

    Article  PubMed  CAS  Google Scholar 

  13. Beyhan S, Yildiz FH (2007) Smooth to rugose phase variation in Vibrio cholerae can be mediated by a single nucleotide change that targets c-di-GMP signalling pathway. Mol Microbiol 63:995–1007

    Article  PubMed  CAS  Google Scholar 

  14. Bhattacharjee RN, Park KS, Kumagai Y, Okada K, Yamamoto M, Uematsu S, Matsui K, Kumar H, Kawai T, Iida T, Honda T, Takeuchi O, Akira S (2006) VP1686, a Vibrio type III secretion protein, induces toll-like receptor-independent apoptosis in macrophage through NF-kappaB inhibition. J Biol Chem 281:36897–36904

    Article  PubMed  CAS  Google Scholar 

  15. Bhattacharjee RN, Park KS, Okada K, Kumagai Y, Uematsu S, Takeuchi O, Akira S, Iida T, Honda T (2005) Microarray analysis identifies apoptosis regulatory gene expression in HCT116 cells infected with thermostable direct hemolysin-deletion mutant of Vibrio parahaemolyticus. Biochem Biophys Res Commun 335:328–334

    Article  PubMed  CAS  Google Scholar 

  16. Bhowmick TS, Das M, Roy N, Sarkar BL (2006) Phenotypic and molecular typing of Vibrio cholerae O1 and O139 isolates from India. J Infect. doi:10.1016/j.jinf.2006.09.018

  17. Binet R, Maurelli AT (2005) Fitness cost due to mutations in the 16S rRNA associated with spectinomycin resistance in Chlamydia psittaci 6BC. Antimicrob Agents Chemother 49:4455–4464

    Article  PubMed  CAS  Google Scholar 

  18. Bjelland AM, Sorum H, Tegegne DA, Winther-Larsen HC, Willassen NP, Hansen H (2012) LitR of Vibrio salmonicida is a salinity-sensitive quorum-sensing regulator of phenotypes involved in host interactions and virulence. Infect Immun 80:1681–1689

    Article  PubMed  CAS  Google Scholar 

  19. Boucher Y, Cordero OX, Takemura A, Hunt DE, Schliep K, Bapteste E, Lopez P, Tarr CL, Polz MF (2011) Local mobile gene pools rapidly cross species boundaries to create endemicity within global Vibrio cholerae populations. MBio. doi:10.1128/mBio.00335-10

  20. Boyd EF, Cohen AL, Naughton LM, Ussery DW, Binnewies TT, Stine OC, Parent MA (2008) Molecular analysis of the emergence of pandemic Vibrio parahaemolyticus. BMC Microbiol 8:110

    Article  PubMed  CAS  Google Scholar 

  21. Broberg CA, Calder TJ, Orth K (2011) Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes and infection / Institut Pasteur 13:992–1001

    Article  PubMed  CAS  Google Scholar 

  22. Burdette DL, Yarbrough ML, Orvedahl A, Gilpin CJ, Orth K (2008) Vibrio parahaemolyticus orchestrates a multifaceted host cell infection by induction of autophagy, cell rounding, and then cell lysis. Proc Natl Acad Sci U S A 105:12497–12502

    Article  PubMed  CAS  Google Scholar 

  23. Canesi L, Gallo G, Gavioli M, Pruzzo C (2002) Bacteria–hemocyte interactions and phagocytosis in marine bivalves. Microsc Res Tech 57:469–476

    Article  PubMed  Google Scholar 

  24. Cao X, Studer SV, Wassarman K, Zhang Y, Ruby EG, Miyashiro T (2012) The novel sigma factor-like regulator RpoQ controls luminescence, chitinase activity, and motility in Vibrio fischeri. MBio. doi:10.1128/mBio.00285-11

  25. Cao X, Wang Q, Liu Q, Liu H, He H, Zhang Y (2010) Vibrio alginolyticus MviN is a LuxO-regulated protein and affects cytotoxicity towards epithelioma papulosum cyprini (EPC) cells. J Microbiol Technol 20:271–280

    Google Scholar 

  26. Chang C, Qing-bai W, Zhu-Hong L, Jing-jing Z, Xiao J, Hong-yan S, Chun-hua R, Chao-qun H (2012) Characterization of role of the toxR gene in the physiology and pathogenicity of Vibrio alginolyticus. Antonie Van Leeuwenhoek 101:281–288

    Article  CAS  Google Scholar 

  27. Chase E, Harwood VJ (2011) Comparison of the effects of environmental parameters on growth rates of Vibrio vulnificus biotypes I, II, and III by culture and quantitative PCR analysis. Appl Environ Microbiol 77:4200–4207

    Article  PubMed  CAS  Google Scholar 

  28. Chavez-Dozal A, Hogan D, Gorman C, Quintanal-Villalonga A, Nishiguchi MK (2012) Multiple Vibrio fischeri genes are involved in biofilm formation and host colonization. FEMS Microbiol Ecol 81:562–573

    Article  PubMed  CAS  Google Scholar 

  29. Chen CY, Wu KM, Chang YC, Chang CH, Tsai HC, Liao TL, Liu YM, Chen HJ, Shen AB, Li JC, Su TL, Shao CP, Lee CT, Hor LI, Tsai SF (2003) Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res 13:2577–2587

    Article  PubMed  CAS  Google Scholar 

  30. Chen H, Williams HN (2012) Sharing of prey: coinfection of a bacterium by a virus and a prokaryotic predator. MBio 3:e00051–00012

    PubMed  Google Scholar 

  31. Chen WL, Oliver JD, Wong HC (2010) Adaptation of Vibrio vulnificus and an rpoS mutant to bile salts. Int J Food Microbiol 140:232–238

    Article  PubMed  CAS  Google Scholar 

  32. Chen Y, Johnson JA, Pusch GD, Morris JG Jr, Stine OC (2007) The genome of non-O1 Vibrio cholerae NRT36S demonstrates the presence of pathogenic mechanisms that are distinct from those of O1 Vibrio cholerae. Infect Immun 75:2645–2647

    Article  PubMed  CAS  Google Scholar 

  33. Chowdhury N, Norris J, McAlister E, Lau SY, Thomas GH, Boyd EF (2012) The VC1777-VC1779 proteins are members of a sialic acid-specific subfamily of TRAP transporters (SiaPQM) and constitute the sole route of sialic acid uptake in the human pathogen Vibrio cholerae. Microbiology 158:2158–2167

    Article  PubMed  CAS  Google Scholar 

  34. Cinar HN, Kothary M, Datta AR, Tall BD, Sprando R, Bilecen K, Yildiz F, McCardell B (2010) Vibrio cholerae hemolysin is required for lethality, developmental delay, and intestinal vacuolation in Caenorhabditis elegans. PLoS One 5:e11558

    Article  PubMed  CAS  Google Scholar 

  35. Colquhoun DJ, Aarflot L, Melvold CF (2007) gyrA and parC mutations and associated quinolone resistance in Vibrio anguillarum serotype O2b strains isolated from farmed Atlantic cod (Gadus morhua) in Norway. Antimicrob Agents Chemother 51:2597–2599

    Article  PubMed  CAS  Google Scholar 

  36. Colwell RR, Brayton PR, Grimes DJ, Roszak SA, Huq A, Palmer LM (1985) Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for the release of genetically engineered microorganisms. Biotechnology 57:597–600

    Google Scholar 

  37. Colwell RR, Brayton PR, Herrington D, Tall B, Huq A, Levine MM (1996) Viable but nonculturable Vibrio cholerae O1 revert to a cultivable state in the human intestine. World J Microbiol Biotechnol 12:28–31

    Article  Google Scholar 

  38. Colwell RR, Grimes DJ (2000) Nonculturable microorganisms in the environment. American Society Microbiology, Washington D. C

    Book  Google Scholar 

  39. Coutard F, Lozach S, Pommepuy M, Hervio-Heath D (2007) Real-time reverse transcription-PCR for transcriptional expression analysis of virulence and housekeeping genes in viable but nonculturable Vibrio parahaemolyticus after recovery of culturability. Appl Environ Microbiol 73:5183–5189

    Article  PubMed  CAS  Google Scholar 

  40. Criminger JD, Hazen TH, Sobecky PA, Lovell CR (2007) Nitrogen fixation by Vibrio parahaemolyticus and its implications for a new ecological niche. Appl Environ Microbiol 73:5959–5961

    Article  PubMed  CAS  Google Scholar 

  41. Croxatto A, Lauritz J, Chen C, Milton DL (2007) Vibrio anguillarum colonization of rainbow trout integument requires a DNA locus involved in exopolysaccharide transport and biosynthesis. Environ Microbiol 9:370–382

    Article  PubMed  CAS  Google Scholar 

  42. Dai JH, Lee YS, Wong HC (1992) Effects of iron limitation on production of a siderophore, outer membrane proteins, and hemolysin and on hydrophobicity, cell adherence, and lethality for mice of Vibrio parahaemolyticus. Infect Immun 60:2952–2956

    PubMed  CAS  Google Scholar 

  43. Davies BW, Bogard RW, Dupes NM, Gerstenfeld TA, Simmons LA, Mekalanos JJ (2011) DNA damage and reactive nitrogen species are barriers to Vibrio cholerae colonization of the infant mouse intestine. PLoS Pathog 7:e1001295

    Article  PubMed  CAS  Google Scholar 

  44. Davies BW, Bogard RW, Young TS, Mekalanos JJ (2012) Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell 149:358–370

    Article  PubMed  CAS  Google Scholar 

  45. Defoirdt T, Darshanee Ruwandeepika HA, Karunasagar I, Boon N, Bossier P (2010) Quorum sensing negatively regulates chitinase in Vibrio harveyi. Environ Microbiol Rep 2:44–49

    Article  CAS  Google Scholar 

  46. DePaola A, Ulaszek J, Kaysner CA, Tenge BJ, Nordstrom JL, Wells J, Puhr N, Gendel SM (2003) Molecular, serological, and virulence characteristics of Vibrio parahaemolyticus isolated from environmental, food, and clinical sources in North America and Asia. Appl Environ Microbiol 69:3999–4005

    Article  PubMed  CAS  Google Scholar 

  47. Dhakal BK, Lee W, Kim YR, Choy HE, Ahnn J, Rhee JH (2006) Caenorhabditis elegans as a simple model host for Vibrio vulnificus infection. Biochem Biophys Res Commun 346:751–757

    Article  PubMed  CAS  Google Scholar 

  48. Dobrindt U, Hochhut B, Hentschel U, Hacker J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2:414–424

    Article  PubMed  CAS  Google Scholar 

  49. Drake SL, DePaola A, Jaykus L-A (2007) An overview of Vibrio vulnificus and Vibrio parahaemolyticus. Compr Rev Food Sci Food Saf 6:120–144

    Article  CAS  Google Scholar 

  50. Duperthuy M, Schmitt P, Garzon E, Caro A, Rosa RD, Le Roux F, Lautredou-Audouy N, Got P, Romestand B, de Lorgeril J, Kieffer-Jaquinod S, Bachere E, Destoumieux-Garzon D (2011) Use of OmpU porins for attachment and invasion of Crassostrea gigas immune cells by the oyster pathogen Vibrio splendidus. Proc Natl Acad Sci U S A 108:2993–2998

    Article  PubMed  CAS  Google Scholar 

  51. Dziejman M, Serruto D, Tam VC, Sturtevant D, Diraphat P, Faruque SM, Rahman MH, Heidelberg JF, Decker J, Li L, Montgomery KT, Grills G, Kucherlapati R, Mekalanos JJ (2005) Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. Proc Natl Acad Sci U S A 102:3465–3470

    Article  PubMed  CAS  Google Scholar 

  52. Fabbri A, Falzano L, Frank C, Donelli G, Matarrese P, Raimondi F, Fasano A, Fiorentini C (1999) Vibrio parahaemolyticus thermostable direct hemolysin modulates cytoskeletal organization and calcium homeostasis in intestinal cultured cells. Infect Immun 67:1139–1148

    PubMed  CAS  Google Scholar 

  53. Faruque SM, Kamruzzaman M, Meraj IM, Chowdhury N, Nair GB, Sack RB, Colwell RR, Sack DA (2003) Pathogenic potential of environmental Vibrio cholerae strains carrying genetic variants of the toxin-coregulated pilus pathogenicity island. Infect Immun 71:1020–1025

    Article  PubMed  CAS  Google Scholar 

  54. Figueroa-Arredondo P, Heuser JE, Akopyants NS, Morisaki JH, Giono-Cerezo S, Enriquez-Rincon F, Berg DE (2001) Cell vacuolation caused by Vibrio cholerae hemolysin. Infect Immun 69:1613–1624

    Article  PubMed  CAS  Google Scholar 

  55. Fong JC, Syed KA, Klose KE, Yildiz FH (2010) Role of Vibrio polysaccharide (vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis. Microbiology 156:2757–2769

    Article  PubMed  CAS  Google Scholar 

  56. Froelich B, Ringwood A, Sokolova I, Oliver J (2010) Uptake and depuration of the C- and E-genotypes of Vibrio vulnificus by the eastern oyster (Crassostrea virginica). Environ Microbiol Rep 2:112–115

    Article  CAS  Google Scholar 

  57. Futagawa K, Yoshie-Stark Y, Ogushi M (2011) Monthly variation of biochemical composition of Pacific oysters Crassostrea gigas from two main cultivation areas in Japan. Fish Sci 77:687–696

    Article  CAS  Google Scholar 

  58. Garrison-Schilling KL, Grau BL, McCarter KS, Olivier BJ, Comeaux NE, Pettis GS (2011) Calcium promotes exopolysaccharide phase variation and biofilm formation of the resulting phase variants in the human pathogen Vibrio vulnificus. Environ Microbiol 13:643–654

    Article  PubMed  CAS  Google Scholar 

  59. Gauthier JD, Jones MK, Thiaville P, Joseph JL, Swain RA, Krediet CJ, Gulig PA, Teplitski M, Wright AC (2010) Role of GacA in virulence of Vibrio vulnificus. Microbiology 156:3722–3733

    Article  PubMed  CAS  Google Scholar 

  60. Gennari M, Ghidini V, Caburlotto G, Lleo MM (2012) Virulence genes and pathogenicity islands in environmental Vibrio strains nonpathogenic to humans. FEMS Microbiol Ecol 82:563–573

    Google Scholar 

  61. Gillespie SH (2001) Antibiotic resistance in the absence of selective pressure. Int J Antimicrob Agents 17:171–176

    Article  PubMed  CAS  Google Scholar 

  62. Giraud A, Matic I, Tenaillon O, Clara A, Radman M, Fons M, Taddei F (2001) Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291:2606–2608

    Article  PubMed  CAS  Google Scholar 

  63. Goo SY, Lee HJ, Kim WH, Han KL, Park DK, Kim SM, Kim KS, Lee KH, Park SJ (2006) Identification of OmpU of Vibrio vulnificus as a fibronectin-binding protein and its role in bacterial pathogenesis. Infect Immun 74:5586–5594

    Article  PubMed  CAS  Google Scholar 

  64. Gotoh K, Kodama T, Hiyoshi H, Izutsu K, Park K-S, Dryselius R, Akeda Y, Honda T, Iida T (2010) Bile acid-induced virulence gene expression of Vibrio parahaemolyticus reveals a novel therapeutic potential for bile acid sequestrants. PLoS One 5:e13365

    Article  PubMed  CAS  Google Scholar 

  65. Grau BL, Henk MC, Garrison KL, Olivier BJ, Schulz RM, O'Reilly KL, Pettis GS (2008) Further characterization of Vibrio vulnificus rugose variants and identification of a capsular and rugose exopolysaccharide gene gluster. Infect Immun 76:1485–1497

    Article  PubMed  CAS  Google Scholar 

  66. Grau BL, Henk MC, Pettis GS (2005) High-frequency phase variation of Vibrio vulnificus 1003: isolation and characterization of a rugose phenotypic variant. J Bacteriol 187:2519–2525

    Article  PubMed  CAS  Google Scholar 

  67. Grimes DJ, Johnson CN, Dillon KS, Flowers AR, Noriea NF 3rd, Berutti T (2009) What genomic sequence information has revealed about Vibrio ecology in the ocean—a review. Microb Ecol 58:447–460

    Article  PubMed  CAS  Google Scholar 

  68. Grimes DJ, Singleton FL, Colwell RR (1984) Allogenic succession of marine bacterial communities in response to pharmaceutical waste. J Appl Bacteriol 57:247–261

    Article  PubMed  CAS  Google Scholar 

  69. Gulig PA, Bourdage KL, Starks AM (2005) J Microbiol 43(Spec No):118–131

    PubMed  CAS  Google Scholar 

  70. Guo Y, Rowe-Magnus DA (2010) Identification of a c-di-GMP-regulated polysaccharide locus governing stress resistance and biofilm and rugose colony formation in Vibrio vulnificus. Infect Immun 78:1390–1402

    Article  PubMed  CAS  Google Scholar 

  71. Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679

    Article  PubMed  CAS  Google Scholar 

  72. Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS computational biology 1:e60

  73. Han H, Wong HC, Kan B, Guo Z, Zeng X, Yin S, Liu X, Yang R, Zhou D (2008) Genome plasticity of Vibrio parahaemolyticus: microevolution of the 'pandemic group'. BMC Genomics 9:570

    Article  PubMed  CAS  Google Scholar 

  74. Harris-Young L, Tamplin ML, Fisher WS, Mason JW (1993) Effects of physicochemical factors and bacterial colony morphotype on association of Vibrio vulnificus with hemocytes of Crassostrea virginica. Appl Environ Microbiol 59:1012–1017

    PubMed  CAS  Google Scholar 

  75. Harris-Young L, Tamplin ML, Mason JW, Aldrich HC, Jackson JK (1995) Viability of Vibrio vulnificus in association with hemocytes of the American oyster (Crassostrea virginica). Appl Environ Microbiol 61:52–57

    PubMed  Google Scholar 

  76. Hasegawa H, Lind EJ, Boin MA, Hase CC (2008) The extracellular metalloprotease of Vibrio tubiashii is a major virulence factor for pacific oyster (Crassostrea gigas) larvae. Appl Environ Microbiol 74:4101–4110

    Article  PubMed  CAS  Google Scholar 

  77. Hazen TH, Pan L, Gu JD, Sobecky PA (2010) The contribution of mobile genetic elements to the evolution and ecology of vibrios. FEMS Microbiol Ecol 74:485–499

    Article  PubMed  CAS  Google Scholar 

  78. He H, Wang Q, Sheng L, Liu Q, Zhang Y (2011) Functional characterization of Vibrio alginolyticus twin-arginine translocation system: its roles in biofilm formation, extracellular protease activity, and virulence towards fish. Curr Microbiol 62:1193–1199

    Article  PubMed  CAS  Google Scholar 

  79. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann RD, Nierman WC, White O, Salzberg SL, Smith HO, Colwell RR, Mekalanos JJ, Venter JC, Fraser CM (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477–483

    Article  PubMed  CAS  Google Scholar 

  80. Henke JM, Bassler BL (2004) Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. J Bacteriol 186:3794–3805

    Article  PubMed  CAS  Google Scholar 

  81. Hernroth B, Lothigius Å, Bölin I (2010) Factors influencing survival of enterotoxigenic Escherichia coli, Salmonella enterica (serovar Typhimurium) and Vibrio parahaemolyticus in marine environments. FEMS Microbiol Ecol 71:272–280

    Article  PubMed  CAS  Google Scholar 

  82. Hilton T, Rosche T, Froelich B, Smith B, Oliver J (2006) Capsular polysaccharide phase variation in Vibrio vulnificus. Appl Environ Microbiol 72:6986–6993

    Article  PubMed  CAS  Google Scholar 

  83. Hirono I, Masuda T, Aoki T (1996) Cloning and detection of the hemolysin gene of Vibrio anguillarum. Microb Pathog 21:173–182

    Article  PubMed  CAS  Google Scholar 

  84. Hiyoshi H, Kodama T, Iida T, Honda T (2010) Contribution of Vibrio parahaemolyticus virulence factors to cytotoxicity, enterotoxicity, and lethality in mice. Infect Immun 78:1772–1780

    Article  PubMed  CAS  Google Scholar 

  85. Hsieh YC, Liang SM, Tsai WL, Chen YH, Liu TY, Liang CM (2003) Study of capsular polysaccharide from Vibrio parahaemolyticus. Infect Immun 71:3329–3336

    Article  PubMed  CAS  Google Scholar 

  86. Huntley JS, Hall AC, Sathyamoorthy V, Hall RH (1993) Cation flux studies of the lesion induced in human erythrocyte membranes by the thermostable direct hemolysin of Vibrio parahaemolyticus. Infect Immun 61:4326–4332

    PubMed  CAS  Google Scholar 

  87. Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR (1983) Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol 45:275–283

    PubMed  CAS  Google Scholar 

  88. Hussa EA, O'Shea TM, Darnell CL, Ruby EG, Visick KL (2007) Two-component response regulators of Vibrio fischeri: identification, mutagenesis, and characterization. J Bacteriol 189:5825–5838

    Article  PubMed  CAS  Google Scholar 

  89. Jang J, Jung KT, Park J, Yoo CK, Rhie GE (2011) The Vibrio cholerae VarS/VarA two-component system controls the expression of virulence proteins through ToxT regulation. Microbiology 157:1466–1473

    Article  PubMed  CAS  Google Scholar 

  90. Joelsson A, Kan B, Zhu J (2007) Quorum sensing enhances the stress response in Vibrio cholerae. Appl Environ Microbiol 73:3742–3746

    Article  PubMed  CAS  Google Scholar 

  91. Johnson CN, Barnes S, Ogle J, Grimes DJ, Chang Y-J, Peacock AD, Kline L (2008) Microbial community analysis of water, foregut, and hindgut during growth of Pacific white shrimp, Litopenaeus vannamei, in closed-system aquaculture. J World Aquac Soc 39:251–258

    Article  Google Scholar 

  92. Johnson CN, Bowers JC, Griffitt KJ, Molina V, Clostio RW, Pei S, Laws E, Paranjpye RN, Strom MS, Chen A, Hasan NA, Huq A, Noriea NF 3rd, Grimes DJ, Colwell RR (2012) Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the coastal and estuarine waters of Louisiana, Maryland, Mississippi, and Washington, United States. Appl Environ Microbiol. doi:10.1128/AEM.01296-12

  93. Johnson CN, Briles DE, Benjamin WH Jr, Hollingshead SK, Waites KB (2005) Relative fitness of fluoroquinolone-resistant Streptococcus pneumoniae. Emerg Infect Dis 11:814–820

    Article  PubMed  CAS  Google Scholar 

  94. Johnson CN, Flowers AR, Noriea NF III, Zimmerman AM, Bowers JC, DePaola A, Grimes DJ (2010) Relationships between environmental factors and pathogenic vibrios in the northern Gulf of Mexico. Appl Environ Microbiol 76:7076–7084

    Article  PubMed  CAS  Google Scholar 

  95. Jones BW, Nishiguchi MK (2004) Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar Biol 144:1151–1155

    Article  Google Scholar 

  96. Jones MK, Oliver JD (2009) Vibrio vulnificus: disease and pathogenesis. Infect Immun 77:1723–1733

    Article  PubMed  CAS  Google Scholar 

  97. Jones MK, Warner E, Oliver JD (2008) Survival of and in situ gene expression by Vibrio vulnificus at varying salinities in estuarine environments. Appl Environ Microbiol 74:182–187

    Article  PubMed  CAS  Google Scholar 

  98. Joseph LA, Wright AC (2004) Expression of Vibrio vulnificus capsular polysaccharide inhibits biofilm formation. J Bacteriol 186:889–893

    Article  PubMed  CAS  Google Scholar 

  99. Jude BA, Martinez RM, Skorupski K, Taylor RK (2009) Levels of the secreted Vibrio cholerae attachment factor GbpA are modulated by quorum-sensing-induced proteolysis. J Bacteriol 191:6911–6917

    Article  PubMed  CAS  Google Scholar 

  100. Keymer DP, Boehm AB (2011) Recombination shapes the structure of an environmental Vibrio cholerae population. Appl Environ Microbiol 77:537–544

    Article  PubMed  CAS  Google Scholar 

  101. Kim YR, Lee SE, Kim CM, Kim SY, Shin EK, Shin DH, Chung SS, Choy HE, Progulske-Fox A, Hillman JD, Handfield M, Rhee JH (2003) Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients. Infect Immun 71:5461–5471

    Article  PubMed  CAS  Google Scholar 

  102. Kirn TJ, Jude BA, Taylor RK (2005) A colonization factor links Vibrio cholerae environmental survival and human infection. Nature 438:863–866

    Article  PubMed  CAS  Google Scholar 

  103. Kitaoka M, Miyata ST, Unterweger D, Pukatzki S (2011) Antibiotic resistance mechanisms of Vibrio cholerae. J Med Microbiol 60:397–407

    Article  PubMed  Google Scholar 

  104. Koenig JE, Bourne DG, Curtis B, Dlutek M, Stokes HW, Doolittle WF, Boucher Y (2011) Coral-mucus-associated Vibrio integrons in the Great Barrier Reef: genomic hotspots for environmental adaptation. ISME J 5:962–972

    Google Scholar 

  105. Krebs SJ, Taylor RK (2011) Protection and attachment of Vibrio cholerae mediated by the toxin-coregulated pilus in the infant mouse model. J Bacteriol 193:5260–5270

    Article  PubMed  CAS  Google Scholar 

  106. Labreuche Y, Le F Roux, Henry J, Zatylny C, Huvet A, Lambert C, Soudant P, Mazel D, Nicolas JL (2010) Vibrio aestuarianus zinc metalloprotease causes lethality in the Pacific oyster Crassostrea gigas and impairs the host cellular immune defenses. Fish Shellfish Immunol 29:753–758

  107. Labreuche Y, Soudant P, Gonçalves M, Lambert C, Nicolas J-L (2006) Effects of extracellular products from the pathogenic Vibrio aestuarianus strain 01/32 on lethality and cellular immune responses of the oyster Crassostrea gigas. Developmental Comp Immunol 30:367–379

    Article  CAS  Google Scholar 

  108. Le Roux F, Zouine M, Chakroun N, Binesse J, Saulnier D, Bouchier C, Zidane N, Ma L, Rusniok C, Lajus A, Buchrieser C, Medigue C, Polz MF, Mazel D (2009) Genome sequence of Vibrio splendidus: an abundant planctonic marine species with a large genotypic diversity. Environ Microbiol 11:1959–1970

    Article  PubMed  CAS  Google Scholar 

  109. Lee BC, Lee JH, Kim MW, Kim BS, Oh MH, Kim KS, Kim TS, Choi SH (2008) Vibrio vulnificus rtxE is important for virulence, and its expression is induced by exposure to host cells. Infect Immun 76:1509–1517

    Article  PubMed  CAS  Google Scholar 

  110. Lee CY, Cheng MF, Yu MS, Pan MJ (2002) Purification and characterization of a putative virulence factor, serine protease, from Vibrio parahaemolyticus. FEMS Microbiol Lett 209:31–37

    Article  PubMed  CAS  Google Scholar 

  111. Lemos ML, Balado M, Osorio CR (2010) Anguibactin- versus vanchrobactin-mediated iron uptake in Vibrio anguillarum: evolution and ecology of a fish pathogen. Environ Microbiol Rep 2:19–26

    Article  CAS  Google Scholar 

  112. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  PubMed  CAS  Google Scholar 

  113. Litwin CM, Rayback TW, Skinner J (1996) Role of catechol siderophore synthesis in Vibrio vulnificus virulence. Infect Immun 64:2834–2838

    PubMed  CAS  Google Scholar 

  114. Liu Z, Yang M, Peterfreund GL, Tsou AM, Selamoglu N, Daldal F, Zhong Z, Kan B, Zhu J (2011) Vibrio cholerae anaerobic induction of virulence gene expression is controlled by thiol-based switches of virulence regulator AphB. Proc Natl Acad Sci 108:810–815

    Article  PubMed  CAS  Google Scholar 

  115. Liuxy PC, Lee KK, Chen SN (1996) Pathogenicity of different isolates of Vibrio harveyi in tiger prawn, Penaeus monodon. Lett Appl Microbiol 22:413–416

    Article  Google Scholar 

  116. Liverman AD, Cheng HC, Trosky JE, Leung DW, Yarbrough ML, Burdette DL, Rosen MK, Orth K (2007) Arp2/3-independent assembly of actin by Vibrio type III effector VopL. Proc Natl Acad Sci U S A 104:17117–17122

    Article  PubMed  CAS  Google Scholar 

  117. Lo Scrudato M, Blokesch M (2012) The regulatory network of natural competence and transformation of Vibrio cholerae. PLoS Genet 8:e1002778

    Article  PubMed  CAS  Google Scholar 

  118. Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, Iijima Y, Najima M, Nakano M, Yamashita A, Kubota Y, Kimura S, Yasunaga T, Honda T, Shinagawa H, Hattori M, Iida T (2003) Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361:743–749

    Article  PubMed  CAS  Google Scholar 

  119. Mansson M, Gram L, Larsen TO (2011) Production of bioactive secondary metabolites by marine vibrionaceae. Mar Drugs 9:1440–1468

    Article  PubMed  CAS  Google Scholar 

  120. Mathur J, Waldor MK (2004) The Vibrio cholerae ToxR-regulated porin OmpU confers resistance to antimicrobial peptides. Infect Immun 72:3577–3583

    Article  PubMed  CAS  Google Scholar 

  121. Matson JS, Withey JH, DiRita VJ (2007) Regulatory networks controlling Vibrio cholerae virulence gene expression. Infect Immun 75:5542–5549

    Article  PubMed  CAS  Google Scholar 

  122. Matz C, Nouri B, McCarter L, Martinez-Urtaza J (2011) Acquired type III secretion system determines environmental fitness of epidemic Vibrio parahaemolyticus in the interaction with bacterivorous protists. PLoS One 6:e20275

    Article  PubMed  CAS  Google Scholar 

  123. McCarter LL (2004) Dual flagellar systems enable motility under different circumstances. J Mol Microbiol Biotechnol 7:18–29

    Article  PubMed  CAS  Google Scholar 

  124. Meador CE, Parsons MM, Bopp CA, Gerner-Smidt P, Painter JA, Vora GJ (2007) Virulence gene- and pandemic group-specific marker profiling of clinical Vibrio parahaemolyticus isolates. J Clin Microbiol 45:1133–1139

    Article  PubMed  CAS  Google Scholar 

  125. Meron D, Efrony R, Johnson WR, Schaefer AL, Morris PJ, Rosenberg E, Greenberg EP, Banin E (2009) Role of flagella in virulence of the coral pathogen Vibrio coralliilyticus. Appl Environ Microbiol 75:5704–5707

    Article  PubMed  CAS  Google Scholar 

  126. Merrell DS, Tischler AD, Lee SH, Camilli A (2000) Vibrio cholerae requires rpoS for efficient intestinal colonization. Infect Immun 68:6691–6696

    Article  PubMed  CAS  Google Scholar 

  127. Ming X, Yamamoto K, Honda T (1994) Construction and characterization of an isogenic mutant of Vibrio parahaemolyticus having a deletion in the thermostable direct hemolysin-related hemolysin gene (trh). J Bacteriol 176:4757–4760

    CAS  Google Scholar 

  128. Morita Y, Kodama K, Shiota S, Mine T, Kataoka A, Mizushima T, Tsuchiya T (1998) NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother 42:1778–1782

    PubMed  CAS  Google Scholar 

  129. Morris AR, Visick KL (2010) Control of biofilm formation and colonization in Vibrio fischeri: a role for partner switching? Environ Microbiol 12:2051–2059

    PubMed  CAS  Google Scholar 

  130. Naka H, Crosa JH (2011) Genetic determinants of virulence in the marine fish pathogen Vibrio anguillarum. Fish pathology 46:1–10

    Article  PubMed  Google Scholar 

  131. Naka H, Dias GM, Thompson CC, Dubay C, Thompson FL, Crosa JH (2011) Complete genome sequence of the marine fish pathogen Vibrio anguillarum harboring the pJM1 virulence plasmid and genomic comparison with other virulent strains of V. anguillarum and V. ordalii. Infect Immun 79:2889–2900

    Article  PubMed  CAS  Google Scholar 

  132. Naka H, Hirono I, Aoki T (2005) Molecular cloning and functional analysis of Photobacterium damselae subsp. piscicida haem receptor gene. J Fish Dis 28:81–88

    Article  PubMed  CAS  Google Scholar 

  133. Naka H, López CS, Crosa JH (2010) Role of the pJM1 plasmid-encoded transport proteins FatB, C and D in ferric anguibactin uptake in the fish pathogen Vibrio anguillarum. Environ Microbiol Rep 2:104–111

    Article  PubMed  CAS  Google Scholar 

  134. Nakasone N, Iwanaga M (1992) The role of pili in colonization of the rabbit intestine by Vibrio parahaemolyticus Na2. Microbiol Immunol 36:123–130

    PubMed  CAS  Google Scholar 

  135. Nielsen AT, Dolganov NA, Otto G, Miller MC, Wu CY, Schoolnik GK (2006) RpoS controls the Vibrio cholerae mucosal escape response. PLoS Pathog 2:e109

    Article  PubMed  CAS  Google Scholar 

  136. Nielsen AT, Dolganov NA, Rasmussen T, Otto G, Miller MC, Felt SA, Torreilles S, Schoolnik GK (2010) A bistable switch and anatomical site control Vibrio cholerae virulence gene expression in the intestine. PLoS Pathog 6:e1001102

    Article  PubMed  CAS  Google Scholar 

  137. Nishibuchi M, Fasano A, Russell RG, Kaper JB (1992) Enterotoxigenicity of Vibrio parahaemolyticus with and without genes encoding thermostable direct hemolysin. Infect Immun 60:3539–3545

    PubMed  CAS  Google Scholar 

  138. Nishiyama S, Suzuki D, Itoh Y, Suzuki K, Tajima H, Hyakutake A, Homma M, Butler-Wu SM, Camilli A, Kawagishi I (2012) Mlp24 (McpX) of Vibrio cholerae implicated in pathogenicity functions as a chemoreceptor for multiple amino acids. Infect Immun 80:3170–3178

    Article  PubMed  CAS  Google Scholar 

  139. Okitsu T, Osawa R, Pornruangwong S, Yamai S (1997) Urea hydrolysis and suppressed production of thermostable direct hemolysin (TDH) by Vibrio parahaemolyticus associated with presence of TDH-related hemolysin genes. Curr Microbiol 34:314–317

    Article  PubMed  CAS  Google Scholar 

  140. Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43(Spec No):93–100

    PubMed  Google Scholar 

  141. Paranjpye RN, Johnson AB, Baxter AE, Strom MS (2007) Role of type IV pilins in persistence of Vibrio vulnificus in Crassostrea virginica oysters. Appl Environ Microbiol 73:5041–5044

    Article  PubMed  CAS  Google Scholar 

  142. Paranjpye RN, Lara JC, Pepe JC, Pepe CM, Strom MS (1998) The type IV leader peptidase/N-methyltransferase of Vibrio vulnificus controls factors required for adherence to HEp-2 cells and virulence in iron-overloaded mice. Infect Immun 66:5659–5668

    PubMed  CAS  Google Scholar 

  143. Paranjpye RN, Strom MS (2005) A Vibrio vulnificus type IV pilin contributes to biofilm formation, adherence to epithelial cells, and virulence. Infect Immun 73:1411–1422

    Article  PubMed  CAS  Google Scholar 

  144. Parsot C, Taxman E, Mekalanos JJ (1991) ToxR regulates the production of lipoproteins and the expression of serum resistance in Vibrio cholerae. Proc Natl Acad Sci 88:1641–1645

    Article  PubMed  CAS  Google Scholar 

  145. Patra T, Koley H, Ramamurthy T, Ghose AC, Nandy RK (2012) The Entner-Doudoroff pathway is obligatory for gluconate utilization and contributes to the pathogenicity of Vibrio cholerae. J Bacteriol 194:3377–3385

    Article  PubMed  CAS  Google Scholar 

  146. Paul K, Ghosh A, Sengupta N, Chowdhury R (2004) Competitive growth advantage of nontoxigenic mutants in the stationary phase in archival cultures of pathogenic Vibrio cholerae strains. Infect Immun 72:5478–5482

    Article  PubMed  CAS  Google Scholar 

  147. Pruzzo C, Gallo G, Canesi L (2005) Persistence of vibrios in marine bivalves: the role of interactions with haemolymph components. Environ Microbiol 7:761–772

    Article  PubMed  Google Scholar 

  148. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103:1528–1533

    Article  PubMed  CAS  Google Scholar 

  149. Qiao G, Lee D, Woo S, Li H, Xu D-H, Park S (2012) Microbiological characteristics of Vibrio scophthalmi isolates from diseased olive flounder Paralichthys olivaceus. Fish Sci 78:853–863

    Article  CAS  Google Scholar 

  150. Quinn MJ, Resch CT, Sun J, Lind EJ, Dibrov P, Hase CC (2012) NhaP1 is a K+(Na+)/H+ antiporter required for growth and internal pH homeostasis of Vibrio cholerae at low extracellular pH. Microbiology 158:1094–1105

    Article  PubMed  CAS  Google Scholar 

  151. Quirke AM, Reen FJ, Claesson MJ, Boyd EF (2006) Genomic island identification in Vibrio vulnificus reveals significant genome plasticity in this human pathogen. Bioinformatics 22:905–910

    Article  PubMed  CAS  Google Scholar 

  152. Rahman MH, Biswas K, Hossain MA, Sack RB, Mekalanos JJ, Faruque SM (2008) Distribution of genes for virulence and ecological fitness among diverse Vibrio cholerae population in a cholera endemic area: tracking the evolution of pathogenic strains. DNA Cell Biol 27:347–355

    Article  PubMed  CAS  Google Scholar 

  153. Raimondi F, Kao JP, Fiorentini C, Fabbri A, Donelli G, Gasparini N, Rubino A, Fasano A (2000) Enterotoxicity and cytotoxicity of Vibrio parahaemolyticus thermostable direct hemolysin in in vitro systems. Infect Immun 68:3180–3185

    Article  PubMed  CAS  Google Scholar 

  154. Records AR (2011) The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol Plant Microbe Interact 24:751–757

    Article  PubMed  CAS  Google Scholar 

  155. Rodkhum C, Maki T, Hirono I, Aoki T (2008) gyrA and parC associated with quinolone resistance in Vibrio anguillarum. J Fish Dis 31:395–399

    Article  PubMed  CAS  Google Scholar 

  156. Rogers MB, Sexton JA, DeCastro GJ, Calderwood SB (2000) Identification of an operon required for ferrichrome iron utilization in Vibrio cholerae. J Bacteriol 182:2350–2353

    Article  PubMed  CAS  Google Scholar 

  157. Rohmer L, Hocquet D, Miller SI (2011) Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol 19:341–348

    Article  PubMed  CAS  Google Scholar 

  158. Ruby EG, Urbanowski M, Campbell J, Dunn A, Faini M, Gunsalus R, Lostroh P, Lupp C, McCann J, Millikan D, Schaefer A, Stabb E, Stevens A, Visick K, Whistler C, Greenberg EP (2005) Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc Natl Acad Sci U S A 102:3004–3009

    Article  PubMed  CAS  Google Scholar 

  159. Rui H, Liu Q, Ma Y, Wang Q, Zhang Y (2008) Roles of LuxR in regulating extracellular alkaline serine protease A, extracellular polysaccharide and mobility of Vibrio alginolyticus. FEMS Microbiol Lett 285:155–162

    Article  PubMed  CAS  Google Scholar 

  160. Rui H, Liu Q, Wang Q, Ma Y, Liu H, Shi C, Zhang Y (2009) Role of alkaline serine protease, asp, in vibrio alginolyticus virulence and regulation of its expression by luxO-luxR regulatory system. J Microbiol Biotechnol 19:431–438

    Article  PubMed  CAS  Google Scholar 

  161. Seed KD, Faruque SM, Mekalanos JJ, Calderwood SB, Qadri F, Camilli A (2012) Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLoS Pathog 8:e1002917

    Article  PubMed  CAS  Google Scholar 

  162. Selvin J, Lipton AP (2003) Vibrio alginolyticus associated with white spot disease of Penaeus monodon. Dis Aquat Organ 57:147–150

    Article  PubMed  Google Scholar 

  163. Shin OS, Tam VC, Suzuki M, Ritchie JM, Bronson RT, Waldor MK, Mekalanos JJ (2011) Type III secretion is essential for the rapidly fatal diarrheal disease caused by non-O1, non-O139 Vibrio cholerae. MBio 2:e00106–e00111

    Article  PubMed  CAS  Google Scholar 

  164. Shinoda S, Miyoshi S-I (2011) Proteases produced by vibrios. Biocontrol Sci 16:1–11

    Article  PubMed  CAS  Google Scholar 

  165. Smith B, Oliver JD (2006) In situ and in vitro gene expression by Vibrio vulnificus during entry into, persistence within, and resuscitation from the viable but nonculturable state. Appl Environ Microbiol 72:1445–1451

    Article  PubMed  CAS  Google Scholar 

  166. Souza CP, Almeida BC, Colwell RR, Rivera IN (2011) The importance of chitin in the marine environment. Mar Biotechnol (NY) 13:823–830

    Article  CAS  Google Scholar 

  167. Stabili L, Gravili C, Piraino S, Boero F, Alifano P (2006) Vibrio harveyi associated with Aglaophenia octodonta (Hydrozoa, Cnidaria). Microb Ecol 52:603–608

    Article  PubMed  CAS  Google Scholar 

  168. Stauder M, Huq A, Pezzati E, Grim CJ, Ramoino P, Pane L, Colwell RR, Pruzzo C, Vezzulli L (2012) Role of GbpA protein, an important virulence-related colonization factor, for Vibrio cholerae's survival in the aquatic environment. Environmental Microbiology Reports 4:439–445

    Article  CAS  Google Scholar 

  169. Stauder M, Vezzulli L, Pezzati E, Repetto B, Pruzzo C (2010) Temperature affects Vibrio cholerae O1 El Tor persistence in the aquatic environment via an enhanced expression of GbpA and MSHA adhesins. Environ Microbiol Rep 2:140–144

    Article  CAS  Google Scholar 

  170. Takahashi A, Iida T, Naim R, Naykaya Y, Honda T (2001) Chloride secretion induced by thermostable direct haemolysin of Vibrio parahaemolyticus depends on colonic cell maturation. J Med Microbiol 50:870–878

    PubMed  CAS  Google Scholar 

  171. Takahashi A, Kenjyo N, Imura K, Myonsun Y, Honda T (2000) Cl(−) secretion in colonic epithelial cells induced by the vibrio parahaemolyticus hemolytic toxin related to thermostable direct hemolysin. Infect Immun 68:5435–5438

    Article  PubMed  CAS  Google Scholar 

  172. Tam VC, Serruto D, Dziejman M, Brieher W, Mekalanos JJ (2007) A type III secretion system in Vibrio cholerae translocates a formin/spire hybrid-like actin nucleator to promote intestinal colonization. Cell host microbe 1:95–107

    Article  PubMed  CAS  Google Scholar 

  173. Tan HJ, Liu SH, Oliver JD, Wong HC (2010) Role of RpoS in the susceptibility of low salinity-adapted Vibrio vulnificus to environmental stresses. Int J Food Microbiol 137:137–142

    Article  PubMed  CAS  Google Scholar 

  174. Taviani E, Spagnoletti M, Ceccarelli D, Haley BJ, Hasan NA, Chen A, Colombo MM, Huq A, Colwell RR (2012) Genomic analysis of ICEVchBan8: an atypical genetic element in Vibrio cholerae. FEBS Lett 586:1617–1621

    Article  PubMed  CAS  Google Scholar 

  175. Tian Y, Wang Q, Liu Q, Ma Y, Cao X, Zhang Y (2008) Role of RpoS in stress survival, synthesis of extracellular autoinducer 2, and virulence in Vibrio alginolyticus. Arch Microbiol 190:585–594

    Article  PubMed  CAS  Google Scholar 

  176. Tran HT, Barnich N, Mizoguchi E (2011) Potential role of chitinases and chitin-binding proteins in host–microbial interactions during the development of intestinal inflammation. Histol Histopathol 26:1453–1464

    PubMed  CAS  Google Scholar 

  177. Trosky JE, Mukherjee S, Burdette DL, Roberts M, McCarter L, Siegel RM, Orth K (2004) Inhibition of MAPK signaling pathways by VopA from Vibrio parahaemolyticus. J Biol Chem 279:51953–51957

    Article  PubMed  CAS  Google Scholar 

  178. Tsou AM, Liu Z, Cai T, Zhu J (2011) The VarS/VarA two-component system modulates the activity of the Vibrio cholerae quorum-sensing transcriptional regulator HapR. Microbiology 157:1620–1628

    Article  PubMed  CAS  Google Scholar 

  179. Vezzulli L, Pruzzo C, Huq A, Colwell RR (2010) Environmental reservoirs of Vibrio cholerae and their role in cholera. Environ Microbiol Rep 2:27–33

    Article  Google Scholar 

  180. Vidgen M, Carson J, Higgins M, Owens L (2006) Changes to the phenotypic profile of Vibrio harveyi when infected with the Vibrio harveyi myovirus-like (VHML) bacteriophage. J Appl Microbiol 100:481–487

    Article  PubMed  CAS  Google Scholar 

  181. Visick KL (2009) An intricate network of regulators controls biofilm formation and colonization by Vibrio fischeri. Mol Microbiol 74:782–789

    Article  PubMed  CAS  Google Scholar 

  182. Volety AK, McCarthy SA, Tall BD, Curtis SK, Fisher WS, Genthner FJ (2001) Responses of oyster Crassostrea virginica hemocytes to environmental and clinical isolates of Vibrio parahaemolyticus. Aquat Microb Ecol 25:11–20

    Article  Google Scholar 

  183. Vora GJ, Meador CE, Bird MM, Bopp CA, Andreadis JD, Stenger DA (2005) Microarray-based detection of genetic heterogeneity, antimicrobial resistance, and the viable but nonculturable state in human pathogenic Vibrio spp. Proc Natl Acad Sci U S A 102:19109–19114

    Article  PubMed  CAS  Google Scholar 

  184. Waldor MK, Colwell R, Mekalanos JJ (1994) The Vibrio cholerae O139 serogroup antigen includes an O-antigen capsule and lipopolysaccharide virulence determinants. Proc Natl Acad Sci U S A 91:11388–11392

    Article  PubMed  CAS  Google Scholar 

  185. Waldor MK, Tschape H, Mekalanos JJ (1996) A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J Bacteriol 178:4157–4165

    PubMed  CAS  Google Scholar 

  186. Wang D, Wang H, Zhou Y, Zhang Q, Zhang F, Du P, Wang S, Chen C, Kan B (2011) Genome sequencing reveals unique mutations in characteristic metabolic pathways and the transfer of virulence genes between V. mimicus and V. cholerae. PLoS One 6:e21299

    Article  PubMed  CAS  Google Scholar 

  187. Wang Q, Liu Q, Cao X, Yang M, Zhang Y (2008) Characterization of two TonB systems in marine fish pathogen Vibrio alginolyticus: their roles in iron utilization and virulence. Arch Microbiol 190:595–603

    Article  PubMed  CAS  Google Scholar 

  188. Waters CM, Wu JT, Ramsey ME, Harris RC, Bassler BL (2010) Control of the type 3 secretion system in Vibrio harveyi by quorum sensing through repression of ExsA. Appl Environ Microbiol 76:4996–5004

    Article  PubMed  CAS  Google Scholar 

  189. Weber B, Chen C, Milton DL (2010) Colonization of fish skin is vital for Vibrio anguillarum to cause disease. Environ Microbiol Rep 2:133–139

    Article  CAS  Google Scholar 

  190. West PA, Okpokwasili GC, Brayton PR, Grimes DJ, Colwell RR (1984) Numerical taxonomy of phenanthrene-degrading bacteria isolated from the Chesapeake Bay. Appl Environ Microbiol 48:988–993

    PubMed  CAS  Google Scholar 

  191. Wietz M, Månsson M, Gram L (2011) Chitin stimulates production of the antibiotic andrimid in a Vibrio coralliilyticus strain. Environ Microbiol Rep 3:559–564

    Article  CAS  Google Scholar 

  192. Wong E, Vaaje-Kolstad G, Ghosh A, Hurtado-Guerrero R, Konarev PV, Ibrahim AF, Svergun DI, Eijsink VG, Chatterjee NS, van Aalten DM (2012) The Vibrio cholerae colonization factor GbpA possesses a modular structure that governs binding to different host surfaces. PLoS Pathog 8:e1002373

    Article  PubMed  CAS  Google Scholar 

  193. Wong HC, Peng PY, Han JM, Chang CY, Lan SL (1998) Effect of mild acid treatment on the survival, enteropathogenicity, and protein production in Vibrio parahaemolyticus. Infect Immun 66:3066–3071

    PubMed  CAS  Google Scholar 

  194. Wright AC, Simpson LM, Oliver JD, Morris JG Jr (1990) Phenotypic evaluation of acapsular transposon mutants of Vibrio vulnificus. Infect Immun 58:1769–1773

    PubMed  CAS  Google Scholar 

  195. Xie ZY, Hu CQ, Chen C, Zhang LP, Ren CH (2005) Investigation of seven Vibrio virulence genes among Vibrio alginolyticus and Vibrio parahaemolyticus strains from the coastal mariculture systems in Guangdong, China. Lett Appl Microbiol 41:202–207

    Article  PubMed  CAS  Google Scholar 

  196. Xiong XP, Wang C, Ye MZ, Yang TC, Peng XX, Li H (2010) Differentially expressed outer membrane proteins of Vibrio alginolyticus in response to six types of antibiotics. Mar Biotechnol (NY) 12:686–695

    Article  CAS  Google Scholar 

  197. Xu Q, Dziejman M, Mekalanos JJ (2003) Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc Natl Acad Sci U S A 100:1286–1291

    Article  PubMed  CAS  Google Scholar 

  198. Yang H, Chen J, Yang G, Zhang X-H, Li Y, Wang M (2007) Characterization and pathogenicity of the zinc metalloprotease EmpA of Vibrio anguillarum expressed in Escherichia coli. Curr Microbiol 54:244–248

    Article  PubMed  CAS  Google Scholar 

  199. Ye J, Ma Y, Liu Q, Zhao DL, Wang QY, Zhang YX (2008) Regulation of Vibrio alginolyticus virulence by the LuxS quorum-sensing system. J Fish Dis 31:161–169

    Article  PubMed  CAS  Google Scholar 

  200. Yildiz FH, Schoolnik GK (1998) Role of rpoS in stress survival and virulence of Vibrio cholerae. J Bacteriol 180:773–784

    PubMed  CAS  Google Scholar 

  201. Yildiz FH, Visick KL (2009) Vibrio biofilms: so much the same yet so different. Trends Microbiol 17:109–118

    Article  PubMed  CAS  Google Scholar 

  202. Yoon KS, Min KJ, Jung YJ, Kwon KY, Lee JK, Oh SW (2008) A model of the effect of temperature on the growth of pathogenic and nonpathogenic Vibrio parahaemolyticus isolated from oysters in Korea. Food Microbiol 25:635–641

    Article  PubMed  CAS  Google Scholar 

  203. Zhang L, Krachler AM, Broberg CA, Li Y, Mirzaei H, Gilpin CJ, Orth K (2012) Type III effector VopC mediates invasion for Vibrio species. Cell Rep 1:453–460

    Article  PubMed  CAS  Google Scholar 

  204. Zhang XH, Austin B (2005) Haemolysins in Vibrio species. J Appl Microbiol 98:1011–1019

    Article  PubMed  CAS  Google Scholar 

  205. Zhao Z, Chen C, Hu C-Q, Ren C-H, Zhao J-J, Zhang L-P, Jiang X, Luo P, Wang Q-B (2010) The type III secretion system of Vibrio alginolyticus induces rapid apoptosis, cell rounding and osmotic lysis of fish cells. Microbiology 156:2864–2872

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research and preparation for this mini-review were supported by NSF grant # EF-1003943 as part of the joint NSF-NIH Ecology of Infectious Diseases program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Crystal N. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, C.N. Fitness Factors in Vibrios: a Mini-review. Microb Ecol 65, 826–851 (2013). https://doi.org/10.1007/s00248-012-0168-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0168-x

Keywords

Navigation