Skip to main content
Log in

Effects of Continuous Thermophilic Composting (CTC) on Bacterial Community in the Active Composting Process

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The method of continuous thermophilic composting (CTC) remarkably shortened the active composting cycle and enhanced the compost stability. Effects of CTC on the quantities of bacteria, with a comparison to the traditional composting (TC) method, were explored by plate count with incubation at 30, 40 and 50°C, respectively, and by quantitative PCR targeting the universal bacterial 16S rRNA genes and the Bacillus 16S rRNA genes. The comparison of cultivatable or uncultivatable bacterial numbers indicated that CTC might have increased the biomass of bacteria, especially Bacillus spp., during the composting. Denaturing gradient gel electrophoresis (DGGE) analysis was employed to investigate the effects of CTC on bacterial diversity, and a community dominated by fewer species was detected in a typical CTC run. The analysis of sequence and phylogeny based on DGGE indicated that the continuously high temperature had changed the structure of bacterial community and strengthened the mainstay role of the thermophilic and spore-forming Bacillus spp. in CTC run.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Adams JDW, Frostick LE (2009) Analysis of bacterial activity, biomass and diversity during windrow composting. Waste Manag 29:598–605

    Article  PubMed  CAS  Google Scholar 

  2. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  3. Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucl Acids Res 18:6069–6074

    Google Scholar 

  4. Beffa T, Blanc M, Marilley L, Fischer JL, Lyon PF, Aragno M (1996) Taxonomic and metabolic microbial diversity during composting. In: de Bertoldi M, Sequi P, Lemmes B, Papi T (eds) The science of composting. Part 1. Chapman and Hall, London, pp 149–161

    Google Scholar 

  5. Belete L, Egger W, Neunhãuserer C, Caballero B, Insam H (2001) Can community level physiological profiles be used for compost maturity testing? Compost Sci Util 9:6–18

    Google Scholar 

  6. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl Acids Res 7:1513–1523

    Google Scholar 

  7. Buchholz-Cleven BEE, Rattunde B, Straub KL (1997) Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Syst Appl Microbiol 20:301–309

    Google Scholar 

  8. Chroni C, Kyriacou A, Georgaki I, Manios T, Kotsou M, Lasaridi K (2009) Microbial characterization during composting of biowaste. Waste Manag 29:1520–1525

    Article  PubMed  CAS  Google Scholar 

  9. Danon M, Franke-Whittle IH, Insam H, Chen Y, Hadar Y (2008) Molecular analysis of bacterial community succession during prolonged compost curing. FEMS Microbiol Ecol 65:133–144

    Article  PubMed  CAS  Google Scholar 

  10. Droffner ML, Brinton WF Jr, Evans E (1995) Evidence for the prominence of well characterized mesophilic bacteria in thermophilic (50–70°C) composting environments. Biomass Bioenerg 8:191–195

    Article  Google Scholar 

  11. Franke-Whittle IH, Knapp BA, Fuchs J, Kaufmann R, Insam H (2009) Application of COMPOCHIP microarray to investigate the bacterial communities of different composts. Microb Ecol 57:510–521

    Article  PubMed  CAS  Google Scholar 

  12. Fuerhacker M, Haberl R (1995) Composting of sewage sludge in a rotating vessel. Water Sci Technol 32:121–125

    CAS  Google Scholar 

  13. Joo HS, Hirai M, Shoda M (2006) Piggery wastewater treatment using Alcaligenes faecalis strain No.4 with heterotrophic nitrification and aerobic denitrification. Water Res 40:3029–3036

    Article  PubMed  CAS  Google Scholar 

  14. Kanzler BEM, Pfannes KR, Vogl K, Overmann J (2005) Molecular characterization of the nonphotosynthetic partner bacterium in the consortium "Chlorochromatium aggregatum". Appl Environ Microbiol 71:7434–7441

    Article  PubMed  CAS  Google Scholar 

  15. Kindaichi T, Kawano Y, Ito T, Satoh H, Okabe S (2006) Population dynamics and in situ kinetics of nitrifying bacteria in autotrophic nitrifying biofilms as determined by real-time quantitative PCR. Biotechnol Bioeng 94:1111–1121

    Article  PubMed  CAS  Google Scholar 

  16. Larney FJ, Yanke LJ, Miller JJ, McAllister TA (2003) Fate of coliform bacteria in composted beef cattle feedlot manure. J Environ Qual 32:1508–1515

    Article  PubMed  CAS  Google Scholar 

  17. Lim J, Do H, Shin SG, Hwang S (2008) Primer and probe sets for group-specific quantification of the genera Nitrosomonas and Nitrosospira using real-time PCR. Biotechnol Bioeng 99:1374–1383

    Article  PubMed  CAS  Google Scholar 

  18. Mayhew LE, Swanner ED, Martin AP, Templeton AS (2008) Phylogenetic relationships and functional genes: distribution of a manganese-oxidizing gene (mnxG) in Bacillus species. Appl Environ Microbiol 74:7265–7271

    Article  PubMed  CAS  Google Scholar 

  19. Mayumi D, Akutsu-Shigeno Y, Uchiyama H, Nomura N, Nakajima-Kambe T (2008) Identification and characterization of novel poly(dl-lactic acid) depolymerases from metagenome. Appl Environ Microbiol 79:743–750

    CAS  Google Scholar 

  20. McCaig AE, Anne Glover L, Prosser JI (1999) Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl Environ Microbiol 65:1721–1730

    Google Scholar 

  21. Mergaert J, Swings J (1996) Biodiversity of microorganisms that degrade bacterial and synthetic polyesters. J Ind Microbiol 17:463–469

    Article  CAS  Google Scholar 

  22. Miyatake F, Iwabuchi K (2005) Effect of high compost temperature on enzymatic activity and species diversity of culturable bacteria in cattle manure compost. Bioresour Technol 96:1821–1825

    Article  PubMed  CAS  Google Scholar 

  23. Murray AE, Hollibaugh JT, Orrego C (1996) Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient gel electrophoresis of 16S rDNA fragments. Appl Environ Microbiol 62:2676–2680

    Google Scholar 

  24. Muyzer G, Brinkhoff T, Ulrich N, Santegoeds C, SchÄfer H, Wawer C (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. Mol Microb Ecol Man 3.4.4:1–27

    Google Scholar 

  25. Nakamura Y, Satoh H, Kindaichi T, Okabe S (2006) Community structure, abundance, and in situ activity of nitrifying bacteria in river sediments as determined by the combined use of molecular techniques and microelectrodes. Environ Sci Technol 40:1532–1539

    Article  PubMed  CAS  Google Scholar 

  26. Nakasaki K, Shoda M, Kubota H (1985) Effect of temperature on composting of sewage sludge. Appl Environ Microbiol 50:1526–1530

    PubMed  CAS  Google Scholar 

  27. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    PubMed  CAS  Google Scholar 

  28. Ryckeboer J, Mergaert J, Vaes K, Klammer S, De Clercq D, Coosemans J et al (2003) A survey of bacteria and fungi occurring during composting and self-heating processes. Ann Microb 53:349–410

    Google Scholar 

  29. Schulze KL (1962) Continuous thermophilic composting. Appl Environ Microbiol 10:108–122

    CAS  Google Scholar 

  30. Sébastien D, Myriam S, Barbara JM, Marcel MMK, Chuck RF, Nicole D (2007) Diversity, relative abundance and metabolic potential of bacterial endosymbionts in three Bathymodiolus mussel species from cold seeps in the Gulf of Mexico. Environ Microbiol 9:1423–1438

    Article  Google Scholar 

  31. Shaver YJ, Nagpal ML, Rudner R, Nakamura LK, Fox KF, Fox A (2002) Restriction fragment length polymorphism of rRNA operons for discrimination and intergenic spacer sequences for cataloging of Bacillus subtilis sub-groups. J Microbiol Meth 50:215–223

    Article  CAS  Google Scholar 

  32. Strom PF (1985) Effect of temperature on bacterial species diversity in thermophilic solid-waste composting. Appl Environ Microbiol 50:899–905

    PubMed  CAS  Google Scholar 

  33. Strom PF (1985) Identification of thermophilic bacteria in solid-waste composting. Appl Environ Microbiol 50:906–913

    PubMed  CAS  Google Scholar 

  34. Suler DJ, Finstein MS (1977) Effect of temperature, aeration, and moisture on co2 formation in bench-scale, continuously thermophilic composting of solid waste. Appl Environ Microbiol 33:345–350

    PubMed  CAS  Google Scholar 

  35. Székely AJ, Sipos R, Berta B, Vajna B, Hajdú C, Márialigeti K (2009) DGGE and T-RFLP analysis of bacterial succession during mushroom compost production and sequence-aided T-RFLP Profile of mature compost. Microb Ecol 57:522–533

    Article  PubMed  Google Scholar 

  36. Tang JC, Shibata A, Zhou Q, Katayama A (2007) Effect of temperature on reaction rate and microbial community in composting of cattle manure with rice straw. J Biosci Bioeng 104:321–328

    Article  PubMed  CAS  Google Scholar 

  37. Torsvik V, GoksÖyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    PubMed  CAS  Google Scholar 

  38. Vallaeys T, Topp E, Muyzer G, Macheret V, Laguerre G, Rigaud A, Soulas G (1997) Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiol Ecol 24:279–285

    Article  CAS  Google Scholar 

  39. Wakase S, Sasaki H, Itoh K, Otawa K, Kitazume O, Nonaka J, Satoh M, Sasaki T, Nakai Y (2008) Investigation of the microbial community in a microbiological additive used in a manure composting process. Bioresour Technol 99:2687–2693

    Article  PubMed  CAS  Google Scholar 

  40. Ward DM, Bateson MM, Weller R, Ruff-Roberts AL (1992) Ribosomal RNA analysis of microorganisms as they occur in nature. Adv Microbiol Ecol 12:219–286

    CAS  Google Scholar 

  41. Wong JWC, Li SWY, Wong MH (1995) Coal fly ash as a composting material for sewage sludge: effects on microbial activities. Environ Technol 16:527–537

    Article  CAS  Google Scholar 

  42. Xiao Y, Zeng GM, Yang ZH, Shi WJ, Huang C, Fan CZ, Xu ZY (2009) Continuous thermophilic composting (CTC) for rapid biodegradation and maturation of organic municipal solid waste. Bioresour Technol 100:4807–4813

    Article  PubMed  CAS  Google Scholar 

  43. Xiao Y, Zeng GM, Yang ZH, Liu YS, Ma YH, Yang L, Wang RJ, Xu ZY (2009) Coexistence of nitrifiers, denitrifiers and Anammox bacteria in a sequencing batch biofilm reactor as revealed by PCR-DGGE. J Appl Microbiol 106:496–505

    Article  PubMed  CAS  Google Scholar 

  44. Yang ZH, Xiao Y, Zeng GM, Xu ZY, Liu YS (2007) Comparison of methods for total community DNA extraction and purification from compost. Appl Microbiol Biotechnol 74:918–925

    Article  PubMed  CAS  Google Scholar 

  45. Yu Y, Kim J, Hwang S (2006) Use of real-time PCR for group-specific quantification of aceticlastic methanogens in anaerobic processes: population dynamics and community structures. Biotechnol Bioeng 93:424–433

    Article  PubMed  CAS  Google Scholar 

  46. Zbinden M, Cambon-Bonavita MA (2003) Occurrence of deferribacterales and entomoplasmatales in the deep-sea Alvinocarid shrimp rimicaris exoculata gut. FEMS Microbiol Ecol 46:23–30

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Program for Changjiang Scholars and Innovative Research Team in University of China (IRT0719), the National Basic Research Program (973 Program) (2005CB724203), the National Natural Science Foundation of China (50978088 and 30970105), and the Hunan Key Scientific Research Project (2009FJ1010). Finally, the authors are very grateful to two anonymous reviewers who contributed to improving the manuscript both in terms of quality and comprehensibility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Ming Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Y., Zeng, GM., Yang, ZH. et al. Effects of Continuous Thermophilic Composting (CTC) on Bacterial Community in the Active Composting Process. Microb Ecol 62, 599–608 (2011). https://doi.org/10.1007/s00248-011-9882-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9882-z

Keywords

Navigation