Skip to main content
Log in

Bacterial Succession in the Thermophilic Phase of Composting of Anaerobic Digestates

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Organic matter degradation and bacterial communities associated to the thermophilic phase of composting were compared using two different types of anaerobic digestates, one from a sewage sludge digester (SD), and the other from an agricultural digester (AD). The composting process exhibited similar variations in temperature, pH, moisture content and bacterial profiles, despite the inherent feedstock differences along with distinctive initial bacterial composition. According to the data obtained from 16S rRNA gene amplicon sequencing, SD constituted more than 20 bacterial phyla with Proteobacteria (21%) and Chloroflexi (21%) being predominant, meanwhile AD was represented by only 7 phyla in which Firmicutes was the most abundant phylum (73%). Nevertheless, bacterial community profiles of the two composting systems became more similarly represented at the phylum level, both dominated by Proteobacteria (65% in AD and 61% in SD), whereas Chromatiaceae and Sphingomonadaceae were the most abundant families in AD and SD, respectively. Highly diverse but similar bacterial communities were detected during the composting of different anaerobic digestates at the thermophilic phase.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Banegas, V., Moreno, J.L., Moreno, J.I., García, C., León, G., Hernández, T.: Composting anaerobic and aerobic sewage sludges using two proportions of sawdust. Waste Manag. 27, 1317–1327 (2007). https://doi.org/10.1016/j.wasman.2006.09.008

    Article  Google Scholar 

  2. Liu, D., Zhang, R., Wu, H., Xu, D., Tang, Z., Yu, G., Xu, Z., Shen, Q.: Changes in biochemical and microbiological parameters during the period of rapid composting of dairy manure with rice chaff. Bioresour. Technol. 102, 9040–9049 (2011). https://doi.org/10.1016/j.biortech.2011.07.052

    Article  Google Scholar 

  3. Ince, O., Ozbayram, E.G., Akyol, Ç, Ince, O., Ince, B.: Composting practice for sustainable waste management: a case study in Istanbul. Desalin. Water Treat. 57, 14473–14477 (2016). https://doi.org/10.1080/19443994.2015.1067170

    Article  Google Scholar 

  4. Nakasaki, K., Tran, L.T.H., Idemoto, Y., Abe, M., Rollon, A.P.: Comparison of organic matter degradation and microbial community during thermophilic composting of two different types of anaerobic sludge. Bioresour. Technol. 100, 676–682 (2009). https://doi.org/10.1016/j.biortech.2008.07.046

    Article  Google Scholar 

  5. Wang, K., Mao, H., Li, X.: Functional characteristics and influence factors of microbial community in sewage sludge composting with inorganic bulking agent. Bioresour. Technol. 249, 527–535 (2018). https://doi.org/10.1016/j.biortech.2017.10.034

    Article  Google Scholar 

  6. Grigatti, M., Cavani, L., Marzadori, C., Ciavatta, C.: Recycling of dry-batch digestate as amendment: soil C and N dynamics and ryegrass nitrogen utilization efficiency. Waste Biomass Valoriz. 5, 823–833 (2014). https://doi.org/10.1007/s12649-014-9302-y

    Article  Google Scholar 

  7. Franke-Whittle, I.H., Confalonieri, A., Insam, H., Schlegelmilch, M., Körner, I.: Changes in the microbial communities during co-composting of digestates. Waste Manag. 34, 632–641 (2014). https://doi.org/10.1016/j.wasman.2013.12.009

    Article  Google Scholar 

  8. Wu, C., Li, W., Wang, K., Li, Y.: Usage of pumice as bulking agent in sewage sludge composting. Bioresour. Technol. 190, 516–521 (2015). https://doi.org/10.1016/j.biortech.2015.03.104

    Article  Google Scholar 

  9. Feng, L., Luo, J., Chen, Y.: Dilemma of sewage sludge treatment and disposal in China. Environ. Sci. Technol. 49, 4781–4782 (2015). https://doi.org/10.1021/acs.est.5b01455

    Article  Google Scholar 

  10. Zhang, D., Luo, W., Li, Y., Wang, G., Li, G.: Performance of co-composting sewage sludge and organic fraction of municipal solid waste at different proportions. Bioresour. Technol. 250, 853–859 (2018). https://doi.org/10.1016/j.biortech.2017.08.136

    Article  Google Scholar 

  11. Villar, I., Alves, D., Garrido, J., Mato, S.: Evolution of microbial dynamics during the maturation phase of the composting of different types of waste. Waste Manag. 54, 83–92 (2016). https://doi.org/10.1016/j.wasman.2016.05.011

    Article  Google Scholar 

  12. Xu, J., Lu, Y., Shan, G., Song, X., Huang, J., Li, Q.: Inoculation with compost-born thermophilic complex microbial consortium induced organic matters degradation while reduced nitrogen loss during co-composting of dairy manure and sugarcane leaves. Waste Biomass Valoriz. (2018). https://doi.org/10.1007/s12649-018-0293-y

    Article  Google Scholar 

  13. López-González, J.A., Vargas-García, MdelC., López, M.J., Suárez-Estrella, F., Jurado, MdelM., Moreno, J.: Biodiversity and succession of mycobiota associated to agricultural lignocellulosic waste-based composting. Bioresour. Technol. 187, 305–313 (2015). https://doi.org/10.1016/j.biortech.2015.03.124

    Article  Google Scholar 

  14. Sundberg, C., Al-Soud, W.A., Larsson, M., Alm, E., Yekta, S.S., Svensson, B.H., Sørensen, S.J., Karlsson, A.: 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol. Ecol. 85, 612–626 (2013). https://doi.org/10.1111/1574-6941.12148

    Article  Google Scholar 

  15. Green, S.J., Michel, F.C., Hadar, Y., Minz, D.: Similarity of bacterial communities in sawdust- and straw-amended cow manure composts. FEMS Microbiol. Lett. 233, 115–123 (2004). https://doi.org/10.1016/j.femsle.2004.01.049

    Article  Google Scholar 

  16. Karadag, D., Özkaya, B., Ölmez, E., Nissilä, M.E., Çakmakçi, M., Yildiz, Ş, Puhakka, J.A.: Profiling of bacterial community in a full-scale aerobic composting plant. Int. Biodeterior. Biodegrad. 77, 85–90 (2013). https://doi.org/10.1016/j.ibiod.2012.10.011

    Article  Google Scholar 

  17. Tian, W., Sun, Q., Xu, D., Zhang, Z., Chen, D., Li, C., Shen, Q., Shen, B.: Succession of bacterial communities during composting process as detected by 16S rRNA clone libraries analysis. Int. Biodeterior. Biodegrad. 78, 58–66 (2013). https://doi.org/10.1016/j.ibiod.2012.12.008

    Article  Google Scholar 

  18. Wang, X., Cui, H., Shi, J., Zhao, X., Zhao, Y., Wei, Z.: Bioresource technology relationship between bacterial diversity and environmental parameters during composting of different raw materials. Bioresour. Technol. 198, 395–402 (2015). https://doi.org/10.1016/j.biortech.2015.09.041

    Article  Google Scholar 

  19. de Gannes, V., Eudoxie, G., Hickey, W.J.: Prokaryotic successions and diversity in composts as revealed by 454-pyrosequencing. Bioresour. Technol. 133, 573–580 (2013). https://doi.org/10.1016/j.biortech.2013.01.138

    Article  Google Scholar 

  20. Zhang, L., Zhang, H., Wang, Z., Chen, G., Wang, L.: Dynamic changes of the dominant functioning microbial community in the compost of a 90-m3aerobic solid state fermentor revealed by integrated meta-omics. Bioresour. Technol. 203, 1–10 (2016). https://doi.org/10.1016/j.biortech.2015.12.040

    Article  Google Scholar 

  21. Wang, C., Dong, D., Wang, H., Müller, K., Qin, Y., Wang, H., Wu, W.: Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol. Biofuels. 9, 1–17 (2016). https://doi.org/10.1186/s13068-016-0440-2

    Article  Google Scholar 

  22. APHA/AWWA/WEF: Standard Methods for the Examination of Water and Wastewater. Stand. Methods. 541 (2012). ISBN 9780875532356

  23. Ondov, B.D., Bergman, N.H., Phillippy, A.M.: Interactive metagenomic visualization in a Web browser. BMC Bioinform. 12, 385 (2011). https://doi.org/10.1186/1471-2105-12-385

    Article  Google Scholar 

  24. Liang, B., Wang, L.Y., Mbadinga, S.M., Liu, J.F., Yang, S.Z., Gu, J.D., Mu, B.Z.: Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express 5, 37 (2015). https://doi.org/10.1186/s13568-015-0117-4

    Article  Google Scholar 

  25. Sträuber, H., Lucas, R., Kleinsteuber, S.: Metabolic and microbial community dynamics during the anaerobic digestion of maize silage in a two-phase process. Appl. Microbiol. Biotechnol. 100, 479–491 (2016). https://doi.org/10.1007/s00253-015-6996-0

    Article  Google Scholar 

  26. Oren, A.: The order Halanaerobiales, and the families Halanaerobiaceae and Halobacteroidaceae. In: The Prokaryotes, pp. 153–177. Springer, Berlin (2014)

    Google Scholar 

  27. Ozbayram, E.G., Kleinsteuber, S., Nikolausz, M., Ince, B., Ince, O.: Enrichment of lignocellulose-degrading microbial communities from natural and engineered methanogenic environments. Appl. Microbiol. Biotechnol. 102, 1035–1043 (2018). https://doi.org/10.1007/s00253-017-8632-7

    Article  Google Scholar 

  28. Vargas-García, M.C., Suárez-Estrella, F., López, M.J., Moreno, J.: Microbial population dynamics and enzyme activities in composting processes with different starting materials. Waste Manag. 30, 771–778 (2010). https://doi.org/10.1016/j.wasman.2009.12.019

    Article  Google Scholar 

  29. Wang, L., Wang, L., Wang, D., Li, J.: Isolation and application of thermophilic and psychrophilic microorganisms in the composting process. Waste Biomass Valoriz. 5, 433–440 (2014). https://doi.org/10.1007/s12649-013-9253-8

    Article  Google Scholar 

  30. Bustamante, M.A., Restrepo, A.P., Alburquerque, J.A., Pérez-Murcia, M.D., Paredes, C., Moral, R., Bernal, M.P.: Recycling of anaerobic digestates by composting: effect of the bulking agent used. J. Clean. Prod. 47, 61–69 (2013). https://doi.org/10.1016/j.jclepro.2012.07.018

    Article  Google Scholar 

  31. Chroni, C., Kyriacou, A., Manios, T., Lasaridi, K.E.: Investigation of the microbial community structure and activity as indicators of compost stability and composting process evolution. Bioresour. Technol. 100, 3745–3750 (2009). https://doi.org/10.1016/j.biortech.2008.12.016

    Article  Google Scholar 

  32. Imhoff, J.: The Chromatiaceae. The prokaryotes. pp. 846–873. Springer, New York (2006). https://doi.org/10.1007/0-387-30746-x_31

    Book  Google Scholar 

  33. López-González, J.A., Suárez-Estrella, F., Vargas-García, M.C., López, M.J., Jurado, M.M., Moreno, J.: Dynamics of bacterial microbiota during lignocellulosic waste composting: studies upon its structure, functionality and biodiversity. Bioresour. Technol. 175, 406–416 (2015). https://doi.org/10.1016/j.biortech.2014.10.123

    Article  Google Scholar 

  34. Manz, W., Amann, R., Ludwig, W., Vancanneyt, M., Schleifer, K.H.: Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology. 142, 1097–1106 (1996). https://doi.org/10.1099/13500872-142-5-1097

    Article  Google Scholar 

  35. Willems, A.: The family Comamonadaceae. In: The Prokaryotes, pp. 777–851. Springer, Berlin (2014)

    Chapter  Google Scholar 

  36. Mandic-Mulec, I., Stefanic, P., van Elsas, J.D.: Ecology of Bacillaceae. In: The bacterial spore: from molecules to systems, pp. 59–85. American Society of Microbiology, Atlanta (2015)

    Google Scholar 

  37. Carareto Alves, L.M., de Souza, J.A.M., Varani, A., de Mello, L.: The family Rhizobiaceae. In: The Prokaryotes, pp. 419–437. Springer, Berlin (2014)

    Chapter  Google Scholar 

  38. Austin, B.: The family Alcaligenaceae. In: The Prokaryotes, pp. 729–757. Springer, Berlin (2014)

    Chapter  Google Scholar 

  39. Zhao, H.Y., Li, J., Liu, J.J., Lü, Y.C., Wang, X.F., Cui, Z.J.: Microbial community dynamics during biogas slurry and cow manure compost. J. Integr. Agric. 12, 1087–1097 (2013). https://doi.org/10.1016/S2095-3119(13)60488-8

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by The Scientific and Technological Research Council of Turkey (TUBITAK Project No. 113Y451).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Çağrı Akyol.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ince, O., Ozbayram, E.G., Akyol, Ç. et al. Bacterial Succession in the Thermophilic Phase of Composting of Anaerobic Digestates. Waste Biomass Valor 11, 841–849 (2020). https://doi.org/10.1007/s12649-018-0531-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0531-3

Keywords

Navigation