Skip to main content

Advertisement

Log in

Role of Natural Flocculation in Eliminating Toxic Metals

  • Mini-Review
  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Metals as the most common environmental pollutants derive from different sources and have far-reaching harmful impacts on flora, fauna and human health. Moreover, metals cause irreversible damages to marine ecosystems. Estuaries are most productive ecosystems for living creatures and act as a transporting corridor for exchanging materials from river to water bodies including oceans, seas and lakes. One of the most important processes in this region is flocculation. Not only does flocculation process convert a huge percentage of metals from dissolved phase to particulate phase in providing micronutrients to aquatic organisms, more importantly, but it also eliminates metals from aquatic ecosystems and gives aid to the pollution of water bodies to be on the decrease. Moreover, the chemical mass balance between river and sea is substantially influenced by flocculation process. Salinity, pH, dissolved oxygen, dissolved organic carbon and sodium hypochlorite as important factors affect the flocculation of metals during estuarine mixing of river water with seawater. It is vital to make use of natural processes in eliminating pollutants. Thus, natural processes need to be recognized and promoted by various means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Achterberg EP, Herzl VM, Braungardt CB, Millward GE (2003) Metal behaviour in an estuary polluted by acid mine drainage: the role of particulate matter. Environ Pollut 121(2):283–292

    Article  CAS  Google Scholar 

  • Afshan S, Ali S, Ameen US, Farid M, Bharwana SA, Hannan F, Ahmad R (2014) Effect of different heavy metal pollution on fish. Res J Chem Environ Sci 2(1):74–79

    CAS  Google Scholar 

  • Ahmed MK, Shaheen N, Islam MS, Habibullah-al-Mamun M, Islam S, Mohiduzzaman M, Bhattacharjee L (2015) Dietary intake of trace elements from highly consumed cultured fish (Labeo rohita, Pangasius pangasius and Oreochromis mossambicus) and human health risk implications in Bangladesh. Chemosphere 128:284–292

    Article  CAS  Google Scholar 

  • Alamdar A, Eqani SA, Hanif N, Ali SM, Fasola M, Bokhari H, Katsoyiannis IA, Shen H (2017) Human exposure to trace metals and arsenic via consumption of fish from river Chenab, Pakistan and associated health risks. Chemosphere 168:1004–1012

    Article  CAS  Google Scholar 

  • Anikiev VV, Goryachev NA (1991) Heavy metals behavior at mixing between marine and riverine waters. Geokhimiya 11:6–42

    Google Scholar 

  • Ashraf A, Saion E, Gharibshahi E, Kamari HM, Yap CK, Hamzah MS, Elias MS (2017) Distribution of trace elements in Core marine sediments of coastal East Malaysia by instrumental neutron activation analysis. Appl Radiat Isot 122:96–105

    Article  CAS  Google Scholar 

  • Biati A, Karbassi AR (2010) Comparison of controlling mechanisms of flocculation processes in estuaries. Int J Environ Sci Technol 7(4):731–736

    Article  CAS  Google Scholar 

  • Biati A, Karbassi AR (2012) Flocculation of metals during mixing of Siyahrud River water with Caspian Sea water. Environ Monit Assess 184:6903–6911

    Article  CAS  Google Scholar 

  • Biati A, Moattar F, Karbassi AR, Hassani AH (2010a) Role of saline water in removal of heavy elements from industrial wastewaters. Int J Environ Res 4:177–182

    CAS  Google Scholar 

  • Biati A, Karbassi AR, Hassani AH, Monavari SM, Moattar F (2010b) Role of metal species in flocculation rate during estuarine mixing. Int J Environ Sci Technol 7:327–336

    Article  CAS  Google Scholar 

  • Biddle P, Miles JH (1972) The nature of contemporary silts in British estuaries. Sediment Geol 7:23–33

    Article  Google Scholar 

  • Biller DV, Bruland KW (2013) Sources and distributions of Mn, Fe Co, Ni, Cu, Zn, and Cd relative to macronutrients along the central California coast during the spring and summer upwelling season. Mar Chem 155:50–70

    Article  CAS  Google Scholar 

  • Blankson ER, Adhikary NRD, Klerks PL (2017) The effect of lead contamination on bioturbation by Lumbriculus variegatus in a freshwater microcosm. Chemosphere 167:19–27

    Article  CAS  Google Scholar 

  • Bonanno G, Raccuia SA (2018) Seagrass Halophila stipulacea: capacity of accumulation and biomonitoring of trace elements. Sci Total Environ 633:257–263

    Article  CAS  Google Scholar 

  • Boyle EA, Edmond JM, Sholkovitz ER (1977) The mechanism of iron removal in estuaries. Geochim Cosmochim Acta 41:1313–1324

    Article  CAS  Google Scholar 

  • Bradl H (2005) Heavy metals in the environment: origin, interaction and remediation. Elsevier, London

    Google Scholar 

  • Breuer E, Sanudo-Wilhelmy SA, Aller RC (1999) Trace metals and dissolved organic carbon in a n estuary with restricted river flow and a brown tide bloom. Estuaries 22(3A):603–615

    Article  CAS  Google Scholar 

  • Calabrese EJ (1998) Reviews in environmental health, 1998; Toxicological defense mechanisms. In: BELLE conference on toxicological defense mechanisms and the shape of dose-response relationships 1996: Research Triangle Park, NC. Superintendent of Documents, USGPO, distributor

  • Cameron WM, Pritchard DW (1963) Estuaries. In: Hill MN (ed) The sea. Wiley, New York, pp 306–324

    Google Scholar 

  • Campana O, Simpson SL, Spadaro DA, Blasco J (2012) Sub-lethal effects of copper to benthic invertebrates explained by sediment properties and dietary exposure. Environ Sci Technol 46(12):6835–6842

    Article  CAS  Google Scholar 

  • Carbonell G, Tarazona JV (1994) Toxicokinetics of copper in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 29:213–221

    Article  CAS  Google Scholar 

  • Censi P, Spoto SE, Saiano F, Sprovieri M, Mazzola S, Nardone G, Di Geronimo SI, Ottonello D (2006) Heavy metals in coastal water systems. A case study from the northwestern Gulf of Thailand. Chemosphere 64(7):1167–1176

    Article  CAS  Google Scholar 

  • Chenar SS, Karbassi AR, Zaker NH, Ghazban F (2012) Electroflocculation of metals during estuarine mixing (Caspian Sea). J Coast Res 29(4):847–854

    Google Scholar 

  • Chiffoleau JF, Cossa D, Auger D, Truquet I (1994) Trace metal distribution, partitioning and fluxes in the Seine estuary (France) in low discharge regime. Mar Chem 47:145–158

    Article  CAS  Google Scholar 

  • Couet D, Pringault O, Bancon-Montigny C, Briant N, Poulichet FE, Delpoux S, Yahia OKD, Hela B, Hervé F, Rovillon G, Amzil Z (2018) Effects of copper and butyltin compounds on the growth, photosynthetic activity and toxin production of two HAB dinoflagellates: the planktonic Alexandrium catenella and the benthic Ostreopsis cf. ovata. Aquat Toxicol 196:154–167

    Article  CAS  Google Scholar 

  • Curray JR (1969) Estuaries, lagoons, tidal flats and deltas. In: Stanley DJ (ed) New concepts of continental margin sedimentation. American Geosciences Institute, Washington, DC

    Google Scholar 

  • Currie DR, Small KJ (2005) Macrobenthic community responses to long-term environmental change in an east Australian sub-tropical estuary. Estuar Coast Shelf Sci 63(1):315–331

    Article  Google Scholar 

  • Dalrymple RW (1992) Tidal depositional systems. In: Walker RG, James NP (eds) Facies models: response to sea level change. Geological Association of Canada, St. John’s, pp 195–218

    Google Scholar 

  • de Mora S, Fowler SW, Wyse E, Azemard S (2004) Distribution of heavy metals in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman. Mar Pollut Bull 49(5–6):410–424

    Article  CAS  Google Scholar 

  • Dhaliwal SS, Toor GS, Rodriguez-Jorquera IA, Osborne TZ, Newman S (2018) Trace metals in the soils of Water Conservation Area of Florida Everglades: considerations for ecosystem restoration. J Soils Sediments 18(2):342–351

    Article  CAS  Google Scholar 

  • Dobson M, Frid C (2008) Ecology of aquatic systems. Oxford University Press, Oxford

    Google Scholar 

  • Droppo IG, Ongley ED (1989) Flocculation of suspended solids in southern Ontario rivers. Sediment Environ 184:95–103

    CAS  Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118

    Google Scholar 

  • Eckert JM, Sholkovitz ER (1976) The flocculation of iron, aluminum and humates from river water by electrolytes. Geochim Cosmochim Acta 40:847–848

    Article  CAS  Google Scholar 

  • Eggleton J, Thomas KV (2004) A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int 30(7):973–980

    Article  CAS  Google Scholar 

  • Eisler R (2004) Biogeochemical, health, and ecotoxicological perspectives on gold and gold mining. CRC Press, Boca Raton

    Book  Google Scholar 

  • Eisma D, Boon J, Groenewegen R, Ittekkot V, Kalf J, Mook WG (1983) Observations on macroaggregates, particle size and organic composition of suspended matter in the Ems estuary. Mitt Geol Palaontol Inst Univ Hamburg SCOPE/UNEP Sonderbereich 55:295–314

    Google Scholar 

  • El-Kady AA, Abdel-Wahhab MA (2018) Occurrence of trace metals in foodstuffs and their health impact. Trends Food Sci Technol 75:36–45

    Article  CAS  Google Scholar 

  • Fakhraee M, Karbassi AR, Vaezi AR, Heidari M, Bashiri A (2015) An investigation on flocculation, adsorption and desorption process during mixing of saline water with fresh water (Caspian Sea). J Environ Stud 41(2):11

    Google Scholar 

  • Farajnejad H, Karbassi A, Heidari M (2017) Fate of toxic metals during estuarine mixing of fresh water with saline water. Environ Sci Pollut Res 24(35):27430–27435

    Article  CAS  Google Scholar 

  • Featherstone AM, O’grady BV (1997) Removal of dissolved copper and iron at the freshwater-saltwater interface of an acid mine stream. Mar Pollut Bull 34(5):332–337

    Article  CAS  Google Scholar 

  • Fox LE, Wofsy SC (1983) Kinetics of removal of iron colloids from estuaries. Geochim Cosmochim Acta 47:211–216

    Article  CAS  Google Scholar 

  • Frazier JM (1979) Bioaccumulation of cadmium in marine organisms. Environ Health Perspect 28:75–79

    Article  CAS  Google Scholar 

  • Gardner GB, Chen RF, Berry A (2005) High-resolution measurements of chromophoric dissolved organic matter (CDOM) in the Neponset River estuary, Boston Harbor, MA. Mar Chem 96:137–154

    Article  CAS  Google Scholar 

  • Gibbs RJ (1983) Coagulation rates of clay minerals and natural sediments. J Sedim Pet 52:1193–1203

    Google Scholar 

  • Gibbs RJ, Konwar L (1986) Coagulation and settling of Amazon River suspended sediment. Cont Shelf Res 6:127–149

    Article  Google Scholar 

  • Guo W, Stedmon CA, Han Y, Wu F, Yu X, Hu M (2007) The conservative and non-conservative behavior of chromophoric dissolved organic matter in Chinese estuarine waters. Mar Chem 107:357–366

    Article  CAS  Google Scholar 

  • Hansen DV, Rattray M (1966) New dimensions in estuary classification. Limnol Oceanogr 11:319–326

    Article  Google Scholar 

  • Hassani AH, Seif S, Javid AH, Borghei M (2008) Comparison of adsorption process by GAC with novel formulation of coagulation-flocculation for color removal of textile wastewater. Int J Environ Res 2(3):239–248

    CAS  Google Scholar 

  • Hassani S, Karbassi AR, Ardestani M (2017) Role of estuarine natural flocculation process in removal of Cu, Mn, Ni, Pb and Zn. Glob J Environ Sci Manag 3(2):187–196

    CAS  Google Scholar 

  • Heidari F, Heidari M (2015) Effectiveness of management of environmental education on improving knowledge for environmental protection (case study: teachers at Tehran’s Elementary School). Int J Environ Res 9:1225–1232

    Google Scholar 

  • Heidari F, Dabiri F, Heidari M (2017) Legal system governing on water pollution in Iran. J Geosci Environ Prot 5:36–59

    Google Scholar 

  • Hesami R, Salimi A, Ghaderian SM (2018) Lead, zinc, and cadmium uptake, accumulation, and phytoremediation by plants growing around Tang-e Douzan lead–zinc mine, Iran. Environ Sci Pollu Res 25:8701–8714

    Article  CAS  Google Scholar 

  • Holcombe GW, Benoit DA, Leonard EN, McKim JM (1976) Long-term effects of lead exposure on three generations of brook trout (Salvelinus fontinalis). J Fish Board Can 33(8):1731–1741

    Article  CAS  Google Scholar 

  • Howe P, Malcolm H, Dobson S (2004) Manganese and its compounds: environmental aspects (no. 63). World Health Organization, Geneva

    Google Scholar 

  • Hwang JS, Dahms HU, Huang KL, Huang MY, Liu XJ, Khim JS, Wong CK (2018) Bioaccumulation of trace metals in octocorals depends on age and tissue compartmentalization. PLoS ONE 13(4):e0196222

    Article  CAS  Google Scholar 

  • Karbassi AR, Heidari M (2015) An investigation on role of salinity, pH and DO on heavy metals elimination throughout estuarial mixture. Glob J Environ Sci Manag 1(1):41–46

    CAS  Google Scholar 

  • Karbassi AR, Marefat A (2017) The impact of increased oxygen conditions on heavy metal flocculation in the Sefidrud estuary. Mar Pollut Bull 121(1–2):168–175

    Article  CAS  Google Scholar 

  • Karbassi AR, Nadjafpour SH (1996) Flocculation of dissolved Pb, Cu, Zn, and Mn during estuarine mixing of river water with the Caspian Sea. Environ Pollut 93:257–260

    Article  CAS  Google Scholar 

  • Karbassi AR, Nouri J, Ayaz GO (2007) Flocculation of trace metals during mixing of Talar River water with Caspian Seawater. Int J Environ Res 1:66–73

    CAS  Google Scholar 

  • Karbassi AR, Monavari SM, Nabi Bidhendi GHR, Nouri J, Nematpour K (2008a) Metal pollution assessment of sediment and water in the Shur River. Environ Monit Assess 147:107–116

    Article  CAS  Google Scholar 

  • Karbassi AR, Nouri J, Mehrdadi N, Ayaz GO (2008b) Flocculation of heavy metals during mixing of freshwater with Caspian Seawater. Environ Geol 53:1811–1816

    Article  CAS  Google Scholar 

  • Karbassi AR, Nouri J, Nabi Bidhendi GHR, Ayaz GO (2008c) Behavior of Cu, Zn, Pb, Ni and Mn during mixing of freshwater with the Caspian Seawater. Desalination 229:118–124

    Article  CAS  Google Scholar 

  • Karbassi AR, Bassam SS, Ardestani M (2013) Flocculation of Cu, Mn, Ni, Pb, and Zn during estuarine mixing (Caspian Sea). Int J Environ Res 7(4):917–924

    CAS  Google Scholar 

  • Karbassi AR, Heidari M, Vaezi AR, Valikhani Samani AR, Fakhraee M, Heidari F (2014) Effect of pH and salinity on flocculation process of heavy metals during mixing of Aras River water with Caspian Sea water. Environ Earth Sci 72(2):457–465

    Article  CAS  Google Scholar 

  • Karbassi AR, Fakhraee M, Heidari M, Vaezi AR, Valikhani Samani AR (2015) Dissolved and particulate trace metal geochemistry during mixing of Karganrud River with Caspian Sea water. Arab J Geosci 8(4):2143–2151

    Article  CAS  Google Scholar 

  • Karbassi AR, Tajziehchi S, Farhang Adib N (2016a) Role of estuarine natural processes in removal of trace metals under emergency situations. Glob J Environ Sci Manag 2(1):31–38

    CAS  Google Scholar 

  • Karbassi AR, Heidari M, Afsari F, Heidari F, Behzadian B (2016b) The individual effects of salinity, voltage and NaClO on elimination efficiency of metals in estuary. Acad J Environ Sci 4(11):201–2012

    CAS  Google Scholar 

  • Kranck K (1975) Sediment deposition from flocculated suspensions. Sedimentology 22:111–123

    Article  Google Scholar 

  • Kranck K (1979) Dynamics and distribution of suspended particulate matter in the St. Lawrence estuary. Nat Can 106:163–173

    Google Scholar 

  • Kranck K (1984) The role of flocculation in the filtering of particulate matter in estuaries. In: Kennedy VS (ed) The estuary as a filter. Academic Press, Orlando, pp 159–175

    Chapter  Google Scholar 

  • Krone RB (1972) A field study of flocculation as a factor in estuarial shoaling processes. U.S. Army Corps of Engineers, Committee on Tidal Hydraulics. Tech Bull 62

  • Laane R (1981) Composition and distribution of dissolved fluorescent substances in the Ems-Dollart estuary. Neth J Sea Res 15:88–99

    Article  CAS  Google Scholar 

  • Mantoura RFC, Woodward EMS (1983) Conservative behaviour of riverine dissolved organic carbon in the Severn Estuary: chemical and geochemical implications. Geochim Cosmochim Acta 47(7):1293–1309

    Article  CAS  Google Scholar 

  • McIntyre PB, Flecker AS, Vanni MJ, Hood JM, Taylor BW, Thomas SA (2008) Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots. Ecology 89(8):2335–2346

    Article  Google Scholar 

  • Meire P, Ysebaert T, Van Damme S, Van den Bergh E, MarisT Struyf E (2005) The Scheldt estuary: a description of a changing ecosystem. Hydrobiologia 540(1–3):1–11

    Article  CAS  Google Scholar 

  • Meybeck M (1988) How to establish and use world budgets of riverine materials. In: Lerman A, Meybeck M (eds) Physical and chemical weathering in geochemical cycles, vol 251. Springer, Netherlands, pp 247–272

    Chapter  Google Scholar 

  • Meyer JL, Tate CM (1983) The effects of watershed disturbance on dissolved organic carbon dynamics of a stream. Ecology 64:33–44

    Article  Google Scholar 

  • Mudgal V, Madaan N, Mudgal A, Singh RB, Mishra S (2010) Effect of toxic metals on human health. Open Nutraceuticals J 3(1):94–99

    CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216

    Article  CAS  Google Scholar 

  • Orani AM, Barats A, Vassileva E, Thomas OP (2018) Marine sponges as a powerful tool for trace elements biomonitoring studies in coastal environment. Mar Pollut Bull 131:633–645

    Article  CAS  Google Scholar 

  • Owens JP, Stefansson K, Sirkin LA (1974) Chemical mineralogic and palynologic character of the upper Wisconsinian lower holocene fill-in parts of Hudson Delaware and Chesapeake estuaries. J Sedim Pet 44:390–480

    CAS  Google Scholar 

  • Pritchard DW (1955) Estuarine circulation patterns. Proc Am Soc Civ Eng 81:1–11

    Google Scholar 

  • Pyle GG, Couture P (2012) Homeostasis and toxicology of essential metals. In: Wood CM, Farrell AP, Brauner CJ (eds) Fish physiology. Elsevier Inc., Amsterdam, pp 253–289

    Google Scholar 

  • Raoult V, Howell N, Zahr D, Peddemors VM, Howard DL, de Jonge MD, Buchan BL, Williamson JE (2018) Localized zinc distribution in shark vertebrae suggests differential deposition during ontogeny and across vertebral structures. PLoS ONE 13(1):e0190927

    Article  CAS  Google Scholar 

  • Rochelle-Newall EJ, Fisher TR (2002) Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay. Mar Chem 77:23–41

    Article  CAS  Google Scholar 

  • Roux E, Molimard M, Savineau JP, Marthan R (1998) Muscarinic stimulation of airway smooth muscle cells. Gen Pharmacol 31:349–356

    Article  CAS  Google Scholar 

  • Saeedi M, Karbassi AR, Mehrdadi N (2003) Flocculation of dissolved Mn, Zn, Ni and Cu during the estuarine mixing of Tadjan River water with Caspian Seawater. Int J Environ Stud 60:575–580

    Article  CAS  Google Scholar 

  • Samani AV, Karbassi AR, Fakhraeea M, Heidaria M, Vaezia AR, Valikhani Z (2014) Effect of dissolved organic carbon and salinity on flocculation process of heavy metals during mixing of the Navrud River water with Caspian Seawater. Desalin Water Treat 55(4):926–934

    Article  CAS  Google Scholar 

  • Samarghandi MR, Nouri J, Mesdaghinia AR, Mahvi AH, Naseri S, Vaezi F (2007) Efficiency removal of phenol, lead and cadmium by means of UV/TiO2/H2O2 processes. Int J Environ Sci Technol 4(1):19–25

    Article  CAS  Google Scholar 

  • Schroeder HA, Nason AP, Tipton IH, Balassa JJ (1966) Essential trace metals in man: copper. J Chronic Dis 19:1007–1034

    Article  CAS  Google Scholar 

  • Schubel JR, Kana TW (1972) Agglomeration of finegrained suspended sediment in northern Chesapeake Bay. Powder Technol 6:9–16

    Article  Google Scholar 

  • Sharp JH, Culberson CH, Chuch TM (1982) The chemistry of the Delaware Estuary. General considerations. Limnol Oceanogr 27(6):1015–1028

    Article  CAS  Google Scholar 

  • Sheldon RW (1968) Sedimentation in the estuary of the river Crouch, Essex, England. Limnol Oceanogr 12:367–375

    Article  Google Scholar 

  • Sholkovitz ER, Boyle EA, Price NB (1978) The removal of dissolved humic acids and iron during estuarine mixing. Earth Planet Sci Lett 40:130–136

    Article  CAS  Google Scholar 

  • Tamzin AB, Erin ML (2017) Mechanisms of nickel toxicity to fish and invertebrates in marine and estuarine waters. Environ Pollut 223:311–322

    Article  CAS  Google Scholar 

  • Vaezi AR, Karbassi AR, Fakhraee M, ValikhaniSamani AR, Heidari M (2014) Assessment of sources and concentration of metal contaminants in marine sediments of Musa estuary, Persian Gulf. J Environ Stud 40:345–360

    Google Scholar 

  • Vaezi AR, Karbassi AR, Habibzadeh SK, Heidari M, ValikhaniSamani AR (2016) Heavy metal contamination and risk assessment in riverine sediments. Indian J Geo Mar Sci 45(8):1017–1023

    Google Scholar 

  • Valle-Levinson A (ed) (2010) Contemporary issues in estuarine physics. Cambridge University Press, Cambridge

    Google Scholar 

  • Wang M, Tong Y, Chen C, Liu X, Lu Y, Zhang W, He W, Wang X, Zhao S, Lin Y (2018) Ecological risk assessment to marine organisms induced by heavy metals in China’s coastal waters. Mar Pollut Bull 126:349–356

    Article  CAS  Google Scholar 

  • Wright DA, Welbourn P (2002) Organic compounds. In: Wright DA, Welbourn P (eds) Environmental toxicology. Environmental chemistry series, vol 11. Cambridge University Press, Cambridge, pp 249–348

    Google Scholar 

  • Zabawa CF (1978) Microstructure of agglomerated suspended sediments in Northern Chesapeake Bay Estuary. Science 202:49–51

    Article  CAS  Google Scholar 

  • Zhang Z, Wang JJ, Ali A, DeLaune RD (2018) Physico-chemical forms of copper in water and sediments of Lake Pontchartrain basin, USA. Chemosphere 195:448–454

    Article  CAS  Google Scholar 

  • Zheng J, Gu XQ, Zhang TJ, Liu HH, Ou QJ, Peng CL (2018) Phytotoxic effects of Cu, Cd and Zn on the seagrass Thalassia hemprichii and metal accumulation in plants growing in Xincun Bay, Hainan, China. Ecotoxicology 27(5):517–526

    Article  CAS  Google Scholar 

  • Zhiqing LE, Jianhu Z, Jinsi C (1987) Flocculation of dissolved Fe, Al, Mn, Si, Cu, Pb and Zn during estuarine mixing. Acta Oceanol Sin 6:567–576

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Heidari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, M. Role of Natural Flocculation in Eliminating Toxic Metals. Arch Environ Contam Toxicol 76, 366–374 (2019). https://doi.org/10.1007/s00244-019-00597-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-019-00597-x

Navigation