Skip to main content

Advertisement

Log in

The establishment of a standard and real patient kidney stone library utilizing Fourier transform-infrared spectroscopy with a diamond ATR accessory

  • Original Paper
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

This investigation highlights the establishment of a real patient kidney stone library utilizing Fourier transform-infrared spectroscopy with a diamond attenuated total reflection accessory (FT-IR ATR) and the construction of a standard FT-IR ATR (sFTIRATR) library using OMNIC spectral math arithmetic operations for kidney stone analysis. This is necessary because reference spectra in commercial libraries provided with specialized software are usually complied using synthesized crystalline compounds which can exhibit changes in intensity, position and/or characteristic profile of reflectance bands when compared with authentic biological stone compositions. Currently, there is no published literature for the Republic of Ireland (RoI) on stone type and prevalence. The results obtained from the establishment of the real patient kidney stone library were a representative selection of kidney stones found in the population, and thereby provided an accurate picture of the present epidemiology of kidney stones in the RoI. The results of 188 patients were compared with those from our newly constructed sFTIRATR library and existing methods, namely wet chemical analysis, and FT-IR ATR utilizing an ATR algorithm and potassium bromide search libraries. We found that for the optimum quantitative analysis of kidney stone mixtures, FT-IR ATR spectroscopy utilizing a standard FT-IR ATR library, supported by a real patient kidney stone library, applying library searching accurately provides the molecular and crystalline species of stone constituents present in an unknown kidney stone sample, providing some predicative value in diagnosing medical conditions. Our data suggest that the epidemiology for nephrolithiasis in the RoI is similar to other Western nations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Channa NA, Ghangro AB, Soomro AM, Noorani L (2007) Analysis of kidney stones by FT-IR spectroscopy. JLUMHS 6(2):66–73

    Google Scholar 

  2. Moe OW (2006) Kidney stones: pathophysiology and medical management. Lancet 367:333–344

    Article  PubMed  CAS  Google Scholar 

  3. Daudon M, Bader CA, Jungers P (1993) Urinary calculi: review of classification methods and correlations with etiology. Scanning Microsc 7:1081–1106

    PubMed  CAS  Google Scholar 

  4. Estepa L, Daudon M (1997) Contribution of Fourier transform-infrared spectroscopy to the identification of urinary stones and kidney crystal deposits. Biospectroscopy 3:347–369

    Article  CAS  Google Scholar 

  5. Miller NL, Lingeman JE (2007) Management of kidney stones. BMJ 334:468–472

    Article  PubMed  Google Scholar 

  6. Volmer M, De Vries JCM, Goldschmidt HMJ (2001) Infrared analysis of urinary calculi by a single reflection accessory and a neural network interpretation algorithm. Clin Chem 47:1287–1296

    PubMed  CAS  Google Scholar 

  7. Rose GA, Woodfine C (1976) The thermogravimetric analysis of renal stones (in clinical practice). BJU 48:403–412

    Article  PubMed  CAS  Google Scholar 

  8. Brien G, Shubert G, Bick C (1982) 10,000 analyses of urinary calculi using X-ray diffraction and polarizing microscopy. Eur Urol 8:251–256

    PubMed  CAS  Google Scholar 

  9. Hashim IA, Zawawi TH (1999) Wet versus dry chemical analysis of renal stones. Ir J Med Sci 168:114–118

    Article  PubMed  CAS  Google Scholar 

  10. Singh I (2008) Renal geology (quantitative renal stone analysis) by ‘Fourier transform infrared spectroscopy’. Int Urol Nephrol 40:595–602

    Article  PubMed  Google Scholar 

  11. Kasidas GP, Samuell CT, Weir TB (2004) Renal stone analysis: why and how? Ann Clin Biochem 41:91–97

    Article  PubMed  CAS  Google Scholar 

  12. Hodgkinson A (1971) A combined qualitative and quantitative procedure for the chemical analysis of urinary calculi. J Clin Path 24:147–151

    Article  PubMed  CAS  Google Scholar 

  13. Gulley-Stahl HJ, Haas JA, Schmidt KA, Evan AP, Sommer AJ (2009) Attenuated total internal Fourier transform infrared spectroscopy: a quantitative approach for kidney stone analysis. Appl Spectrosc 63(7):759–766

    Article  PubMed  CAS  Google Scholar 

  14. Thermo Electron Corporation (2005) Kidney stone analysis using a Nicolet FT-IR spectrometer. Thermo Electron Scientific Instruments Corporation, Madison. http://www.thermo.com/eThermo/CMA/PDFs/Articles/articlesFile_25718.pdf

  15. Cohen-Solal F, Dabrowsky B, Boulou JC, Lacour B, Daudon M (2004) Automated Fourier transform infrared analysis of urinary stones: technical aspects and examples of procedures applied to carbapatite/weddellite mixtures. Appl Spectrosc 58:671–678

    Article  PubMed  CAS  Google Scholar 

  16. Pak CY, Poindexter JR, Adams-Huet B, Pearle MS (2003) Predicative value of kidney stone composition in the detection of metabolic abnormalities. Am J Med 115:26–32

    Article  PubMed  CAS  Google Scholar 

  17. Pramanik R, Asplin JR, Jackson ME, Williams JC (2008) Protein content of human apatite and brushite kidney stones: significant correlation with morphologic measures. Urol Res 36:251–258

    Article  PubMed  CAS  Google Scholar 

  18. Sai Sathish R, Ranjit B, Ganesh KM, Nageswara Rao G, Janardhana C (2008) A quantitative study on the chemical composition of renal stones and their fluoride content from Anantapur District, Andhra Pradesh, India. Curr Sci India 94:104–109

    Google Scholar 

  19. Anderson JC, Williams JC Jr, Evan AP, Condon KW, Sommer AJ (2007) Analysis of urinary calculi using an infrared microspectroscopic surface reflectance imaging technique. Urol Res 35:41–48

    Article  PubMed  CAS  Google Scholar 

  20. Kanchana G, Sundaramoorthi P, Jeyanthi GP (2009) Bio-chemical analysis and FTIR-spectral studies of artificially removed renal stone mineral constituent. JMMCE 8:161–170

    Google Scholar 

  21. Robertson WG, Jaeger PH, Unwin RJ (2004) Macromolecules and urolithiasis: parallels and paradoxes. Nephron Physiol 98:37–42

    Article  Google Scholar 

  22. Sugimoto T, Funae Y, Rubbeb H (1985) Resolution of proteins in the kidney stone matrix using high-performance liquid chromatography. Eur Urol 11:334–340

    PubMed  CAS  Google Scholar 

  23. Daudon M, Dore JC, Jungers P, Lacour B (2004) Changes in stone composition according to age and gender of patients: a multivariate epidemiological approach. Urol Res 32:241–247

    Article  PubMed  Google Scholar 

  24. Estepa L, Levillian P, Lacour B, Daudon M (1999) Crystalline phase differentiation in urinary calcium phosphate and magnesium phosphate calculi. Scand J Urol Nephrol 33:299–305

    Article  Google Scholar 

  25. Carmona P, Bellanato J, Escolar E (1997) Infrared and Raman spectroscopy of urinary calculi: a review. Biospectroscopy 3:331–346

    Article  CAS  Google Scholar 

  26. Daudon M, Jungers P (2004) Clinical value of crystalluria and quantitative morphoconstitutional analysis of urinary calculi. Nephron Physiol 98:31–36

    Article  Google Scholar 

  27. Koide T, Itatani H, Yoshioka T, Ito H, Namiki M, Nakano E, Okuyama A, Takemoto M, Sonoda T (1982) Clinical manifestations of calcium oxalate monohydrate and dihydrate urolithiasis. J Urol 127:1067–1069

    PubMed  CAS  Google Scholar 

  28. Sreejith P, Narasimhan KL, Sakhuja V (2009) 2,8-Dihydroxyadenine urolithiasis: a case report and review of literature. Indian J Nephrol 19:34–36

    Article  PubMed  CAS  Google Scholar 

  29. Shekarriz B, Stoller ML (2002) Uric acid nephrolithiasis: current concepts and controversies. J Urol 168:1307–1314

    Article  PubMed  CAS  Google Scholar 

  30. Griffith DP, Osborne CA (1987) Infection (urease) stones. Miner Electrol Metab 13:278–285

    CAS  Google Scholar 

  31. Koide T, Oka T, Takaha T, Sonoda T (1986) Urinary tract stone disease in modern Japan. Eur Urol 12:403–407

    PubMed  CAS  Google Scholar 

  32. Leusmann DB, Blaschke R, Schmandt W (1990) Results of 5,035 stone analysis: a contribution to epidemiology of stone disease. Scand J Urol Nephrol 24:205–210

    Article  PubMed  CAS  Google Scholar 

  33. Hughes P (2007) Kidney stone epidemiology. Nephrology 12:S26–S30

    Article  PubMed  Google Scholar 

  34. Kit LC, Filler G, Pike J, Leonard MP (2008) Pediatric urolithiasis: experience at a tertiary care pediatric hospital. CUAJ 2:381–386

    PubMed  Google Scholar 

  35. Pak CYC (1998) Kidney stones. Lancet 351:1797–1801

    Article  PubMed  CAS  Google Scholar 

  36. Heaney RP (2008) Calcium supplementation and incident kidney stone risk: a systematic review. J Am Coll Nutr 27:519–527

    PubMed  CAS  Google Scholar 

  37. Gault MH, Chafe L (2000) Relationship of frequency, age, sex, stone weight and comparison in 15,624 stones: comparison of results for 1980 to 1983 and 1995 to 1998. J Urol 164:302–307

    Article  PubMed  CAS  Google Scholar 

  38. Kohri K, Kodama M, Ishikawa Y, Katayama Y, Takada M, Katoh Y, Kataoka K, Iguchi M, Kurita T (1991) Relationship between metabolic acidosis and calcium phosphate urinary stone formation in women. Int Urol Nephrol 23:307–316

    Article  PubMed  CAS  Google Scholar 

  39. Daudon M, Traxer O, Conort P, Lacour B, Jungers P (2006) Type 2 diabetes increases the risk for uric acid stones. J Am Soc Nephrol 17:2026–2033

    Article  PubMed  CAS  Google Scholar 

  40. Soble JJ, Hamilton BD, Streem SB (1999) Ammonium acid urate calculi: a re-evaluation of risk factors. J Urol 161:869–873

    Article  PubMed  CAS  Google Scholar 

  41. Ahmed K, Dasgupta P, Khan MS (2006) Cystine calculi: challenging group of stones. Postgrad Med J 82:799–801

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith J. Mulready.

Additional information

This study has been approved by the Mater Misericordiae University Hospital ethics committee and has been performed in accordance with ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulready, K.J., McGoldrick, D. The establishment of a standard and real patient kidney stone library utilizing Fourier transform-infrared spectroscopy with a diamond ATR accessory. Urol Res 40, 483–498 (2012). https://doi.org/10.1007/s00240-011-0456-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-011-0456-9

Keywords

Navigation