Skip to main content
Log in

Analysis of urinary calculi using an infrared microspectroscopic surface reflectance imaging technique

  • Original Paper
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

This investigation highlights the use of infrared microspectroscopy for the morphological analysis of urinary stones. The research presented here has utilized the reflectance mode of an infrared microscope for use in creating chemically specific maps of cross-sectioned renal calculi surfaces, precisely showing the placement of renal stone components in a calculus sample. The method has been applied to renal stones of both single and multiple components consisting primarily of hydroxyapatite, calcium oxalate monohydrate and calcium oxalate dihydrate. Factors discussed include the photometric accuracy of the spectra obtained, a comparison of the surface reflectance method with existing methods such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and attenuated total internal reflection (ATR) analysis, and the influence of specular reflectance between polished and unpolished sample spectra. Full spectral maps of cross-sectioned renal stones provided positive localization of components using qualitatively accurate spectra similar in appearance to DRIFTS spectra. Unlike ATR and DRIFTS spectra, surface reflectance spectra lack photometric accuracy and are therefore not quantifiable; at present, however, spectra are suitable for qualitative analysis. It was found that specular reflectance increases minimally with a highly polished stone cross-section surface, though qualitative data is not affected. Surface reflectance imaging of sections of renal stones is useful for determining the identity of stone components while simultaneously providing precise locations of mineral components within the stone using presently available instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sperrin MW, Rogers K (1998) Br J Urol 82:781–784

    PubMed  CAS  Google Scholar 

  2. Daudon M (2004) Rev Med Suisse Romande 124:445–453

    PubMed  Google Scholar 

  3. Daudon M, Bader CA, Jungers P (1993) Scanning Microsc 7:1081–1106

    PubMed  CAS  Google Scholar 

  4. Evan A, Lingeman J, Coe FL, Worcester E (2006) Kidney Int 69:1313–1318

    Article  PubMed  CAS  Google Scholar 

  5. Williams JC, Matlaga BR, Kim SC, Jackson ME, Sommer AJ, McAteer JA, Lingeman JE, Evan AP (2006) Calcium oxalate calculi found attached to the renal papilla: preliminary evidence for early mechanisms in stone formation. J Endourol 20(11):885–890

    Article  PubMed  Google Scholar 

  6. Williams CP, Child DF, Hudson PR, Davies GK, Davies MG, John R, Anandaram PS, De Bolla AR (2001) J Clin Pathol 54:54–62

    Article  PubMed  CAS  Google Scholar 

  7. Stitchantrakul W, Sopassathit W, Prapaipanich S, Domrongkitchaiporn S (2004) Southeast Asian J Trop Med Public Health 35:1028–1033

    PubMed  CAS  Google Scholar 

  8. Chai W, Liebman M, Kynast-Gales S, Massey L (2004) Am J Kidney Dis 44:1060–1069

    Article  PubMed  CAS  Google Scholar 

  9. Murphy BT, Pyrah LN (1962) Br J Urol 34:129–159

    Article  PubMed  CAS  Google Scholar 

  10. Cifuentes DL (1977) J Urol Nephrol 83(Suppl 2):592–596

    Google Scholar 

  11. Gault MH, Ahmed M, Kalra J, Senciall I, Cohen W, Churchill D (1980) Clin Chim Acta 104:349–359

    Article  PubMed  CAS  Google Scholar 

  12. Volmer M, DeVries J, Goldschmidt H (2001) Clin Chem 47:1287–1296

    PubMed  CAS  Google Scholar 

  13. Carmona P, Bellanato J, Escolar E (1997) Biospectroscopy 3:331–346

    Article  CAS  Google Scholar 

  14. Ouyang H, Paschalis E, Mayo W, Boskey A, Mendelsohn R (2001) J Bone Miner Res 16:893–900

    Article  CAS  Google Scholar 

  15. Paschalis E, Verdelis K, Doty S, Boskey A, Mendelsohn R, Yanauchi M (2001) J Bone Miner Res 16:1821–1828

    Article  PubMed  CAS  Google Scholar 

  16. Gadaleta S, Landis W, Boskey A, Mendelsohn R (1996) Connect Tissue Res 34:203–211

    PubMed  CAS  Google Scholar 

  17. Mendelsohn R, Paschalis E, Sherman P, Boskey A (2000) Appl Spectrosc 54:1183–1191

    Article  CAS  Google Scholar 

  18. Mendelsohn R, Paschalis E, Boskey A (1999) J Biomed Opt 4:14–21

    Article  Google Scholar 

  19. Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty G (1998) Bone 23:187–196

    Article  PubMed  CAS  Google Scholar 

  20. Anderson JC, Dellomo J, Sommer AJ, Evan AP, Bledsoe S (2005) Urol Res 33:213–219

    Article  PubMed  CAS  Google Scholar 

  21. Bergin FJ (1989) Appl Spectrosc 43:511–515

    Article  CAS  Google Scholar 

  22. Kubelka P, Munk MP (1931) Z Tech Phys 12:593

    Google Scholar 

  23. Rintoul L, Fredericks PM (1995) Appl Spectrosc 49:608–616

    Article  CAS  Google Scholar 

  24. Blitz JP (1998) Diffuse reflectance spectroscopy. In: Mirabella FM (ed) Modern techniques in applied molecular spectroscopy. Wiley, New York

  25. Kleeberg J, Gordon T, Kedar S, Dobler M (1981) Urol Res 9:259–261

    Article  PubMed  CAS  Google Scholar 

  26. Kasidas GP, Samuell CT, Weir TB (2004) Ann Clin Biochem 41:91–97

    Article  PubMed  CAS  Google Scholar 

  27. Lippert RJ, Lamp BD, Porter MD (1998) Specular reflection spectroscopy. In: Mirabella FM (ed) Modern techniques in applied molecular spectroscopy. Wiley, New York

  28. Tomar VS, Bist HD (1970) Appl Spectrosc 24:598–601

    Article  CAS  Google Scholar 

  29. Bellamy LJ (1966) The infra-red spectra of complex molecules. Wiley, New York

    Google Scholar 

  30. Mirabella FM (1998) In: Mirabella FM (ed) Attenuated total reflection spectroscopy, in modern techniques in applied molecular spectroscopy. Wiley, New York

  31. Patterson BM, Havrilla GJ (2006) Attenuated total internal reflection infrared microspectroscopic imaging using a large-radius germanium internal reflection element and a linear array detector. Appl Spectrosc 60(11):1256–1266

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Molly Jackson for her aid in the acquisition and preparation of the urinary calculi samples. Additionally, funding for a portion of this research was obtained from the National Institute of Health, grant PO1 DK56788.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André J. Sommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, J.C., Williams, J.C., Evan, A.P. et al. Analysis of urinary calculi using an infrared microspectroscopic surface reflectance imaging technique. Urol Res 35, 41–48 (2007). https://doi.org/10.1007/s00240-006-0077-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-006-0077-x

Keywords

Navigation