Skip to main content
Log in

Analysis of Human Urinary Stones and Gallstones by Fourier Transform Infrared Attenuated Total Reflectance Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

The aim of this study was to analyze the composition of urinary stones and gallstones and assess their prevalence as a function of age and sex. A total of 425 urinary stones and 108 gallstones was analyzed for composition using FTIR-ATR spectroscopy. According to the absorption band spectra obtained using FTIR-ATR, urinary stones were classified into the following groups: calcium oxalate (55.6%), uric acid (24.1%), hydroxyapatite (7.3%), struvite (9.0%), brucite (2.1%), cystine (1.0%) and ammonium urate (0.2%). Gallstones were classified into cholesterol (66.7%) and pigment stones (33.3%). As to urinary stones, they are more common in males (62.0%) than in females (38.0%) (ratio ♂/♀: 1.7), calcium oxalate stones being the most common ones in both sexes. Women have a higher frequency of hydroxyapatite and struvite than men (p < 0.05), whereas males have a higher frequency of calcium oxalate and uric acid than women (p < 0.05). Calcium oxalate stones are more common in the 30–69 years age group (p < 0.05), while uric acid stones are more common in ages >50 years (p < 0.05). As to gallstones, they are more common in women (59.3%) than in men (40.7%) (ratio ♀/♂: 1.4), cholesterol stones being the most prevalent in both sexes. Women have greater frequency of cholesterol stones than men (p < 0.05) and men have higher frequency of pigment stones than women (p < 0.05). Cholesterol stones were more common in ages <60 year (p < 0.05), whereas pigment stones were more common in ages ≥60 years (p < 0.05). The results of this study show that the physical analysis of stones using FTIR-ATR spectroscopy provides fairly accurate information on its composition, and sex and age have been seen to have an influence on the type of stone formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. W. Moe, Lancet, 367, 333–344 (2006).

    Article  Google Scholar 

  2. B. J. Ha and S. Park, Biomater. Res., 22, 18 (2018).

    Article  Google Scholar 

  3. L. M. Stinton, R. P. Myers, and E. A. Shaffer, Gastroenterol. Clin. N. Am., 39, 157–169 (2010).

    Article  Google Scholar 

  4. G. P. Kasidas, C. T. Samuell, and T. B. Weir, Ann. Clin. Biochem., 41, 91–97 (2004).

    Article  Google Scholar 

  5. A. Basiri, M. Taheri, and F. Taheri, Urol. J., 9, 445–454 (2012).

    Google Scholar 

  6. E. H. Yoo, H. J. Oh, and S. Y. Lee, Clin. Chem. Lab. Med., 46, 376–381 (2008).

    Article  Google Scholar 

  7. C. Türk, A. PetříK, K. Sarica, C. Seitz, A. Skolarikos, M. Straub, and T. Knoll, Eur. Urol., 69, 468–474 (2016).

    Article  Google Scholar 

  8. J. C. Lieske, A. D. Rule, A. E. Krambeck, J. C. Williams, E. C. Bergstralh, R. A. Mehta, and T. P. Moyer, Clin. J. Am. Soc. Nephrol., 9, 2141–2146 (2014).

    Article  Google Scholar 

  9. A. Cariati, Indian J. Surg., 77, S376–S380 (2015).

    Article  Google Scholar 

  10. S. Tamošaityté, V. Hendrixson, A. Želvys, R. Tyla, Z. A. Kučinskiene, F. Jankevičius, M. Pučetaitè, V. Jablonskiene, and V. Šablinskas, J. Biomed. Opt., 18, 027011 (2013).

  11. R. H. Ma, X. B. Luo, Q. Li, and H. Q. Zhong, Int. J. Surg., 41, 150–161 (2017).

    Article  Google Scholar 

  12. R. Selvaraju, G. Thiruppathi, and A. Raja, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 93, 260–265 (2012).

    Article  ADS  Google Scholar 

  13. O. Kleiner, J. Ramesh, M. Huleihel, B. Cohen, K. Kantarovich, C. Levi, B. Polyak, R. S. Marks, J. Mordehai, Z. Cohen, and S. Mordechai, BMC Gastronterol., 2, 3 (2002).

    Article  Google Scholar 

  14. C. L. Cheng, H. H. Chang, T. H. Chen, P. J. Tsai, Y. T. Huang, P. J. Huang, and S. Y. Lin, Dig. Liver Dis., 48, 519–527 (2016).

    Article  Google Scholar 

  15. T. Qiao, R. H. Ma, X. B. Luo, L. Q. Yang, Z. L. Luo, and P. M. Zheng, PLoS One., 8, e74887 (2013).

  16. A. Hesse, R. Kruse, W. J. Geilenkeuser, and M. Schmidt, Clin. Chem. Lab. Med., 43, 298–303 (2005).

    Article  Google Scholar 

  17. R. Siener, N. Buchholz, M. Daudon, B. Hess, T. Knoll, P. J. Osther, J. R. Santos, K. Sarica, O. Traxer, and A. Trinchieri, PLoS One., 11, e0156606 (2016).

  18. X. Yang, C. Zhang, S. Qi, Z. Zhang, Q. Shi, C. Liu, K. Yang, E. Du, N. Li, J. Shi, and Y. Xu, J. Clin. Lab. Anal., 30, 873–879 (2016).

    Article  Google Scholar 

  19. I. Miguel–Elízaga, A. Martínez–Ruiz, F. Avilés–Plaza, J. A. Noguera–Velasco, P. Martínez-Hernández, and S. Parra-Pallarés. Clin. Chem. Lab. Med., 50, 545–548 (2012).

  20. R. Siener and A. Hesse, Eur. Urol., 42, 289–296 (2002).

    Article  Google Scholar 

  21. A. Costa–Bauzá, M. Ramis, V. Montesinos, A. Conte, P. Pizá, E. Pieras, and F. Grases, World J. Urol., 25, 415–421 (2007).

  22. A. Viljoen, R. Chaudhry, and J. Bycroft, Ann. Clin. Biochem., 56, 15–27 (2019).

    Article  Google Scholar 

  23. H. W. Chen, Y. C. Chen, F. M. Yang, W. J. Wu, C. C. Li, Y. Y. Chang, and Y. H. Chou, Sci. Rep., 8, 6077 (2018).

    Article  ADS  Google Scholar 

  24. M. Daudon, H. Bouzidi, and D. Bazin, Urol. Res., 38, 459–467 (2010).

    Article  Google Scholar 

  25. R. K. Flannigan, A. Battison, S. De, M. R. Humphreys, M. Bader, E. Lellig, M. Monga, B. H. Chew, and D. Lange, Can. Urol. Assoc. J., 12, 131–136 (2018).

    Article  Google Scholar 

  26. E. A. Shaffer, Best Pract. Res. Clin. Gastroenterol., 20, 981–996 (2006).

    Article  Google Scholar 

  27. B. M. Jarrar and M. A. Al Rowaili, Malays. J. Med. Sci., 18, 47–52 (2011).

    Google Scholar 

  28. H. Weerakoon, J. G. S. Ranasinghe, A. Navaratna, R. Sivakanesan, K. B. Galketiya, and S. Rosairo, BMC Gastroenterol., 14, 88 (2014).

    Article  Google Scholar 

  29. K. J. Van Erpecum, Clin. Res. Hepatol. Gastroenterol., 35, 281–287 (2011).

    Article  Google Scholar 

  30. T. Liu, W. Wang, Y. Ji, Y. Wang, X. Liu, L. Cao, and S. Liu, PLoS One., 13, e0196457 (2018).

  31. A. K. Diehl, W. H. Schwesinger, D. R. Holleman Jr., J. B. Chapman, and W. E. Kurtin, Am. J. Gastroenterol., 90, 967–972 (1995).

    Google Scholar 

  32. J. H. Siegel and F. E. Kasmin, Gut, 41, 433–435 (1997).

    Article  Google Scholar 

  33. M. Acalovschi, World J. Gastroenterol, 20, 7277–7285 (2014).

    Article  Google Scholar 

  34. K. Julka and C. W. Ko, Infect. Dis. Clin. N. Am., 24, 885–898 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Hermida.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 1, p. 166, January–February, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermida, F.J. Analysis of Human Urinary Stones and Gallstones by Fourier Transform Infrared Attenuated Total Reflectance Spectroscopy. J Appl Spectrosc 88, 215–224 (2021). https://doi.org/10.1007/s10812-021-01160-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01160-0

Keywords

Navigation