Skip to main content

Advertisement

Log in

Nephrocalcinosis in animal models with and without stones

  • SYMPOSIUM PAPER
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

Nephrocalcinosis is the deposition of calcium salts in renal parenchyma and can be intratubular or interstitial. Animal model studies indicate that intratubular nephrocalcinosis is a result of increased urinary supersaturation. Urinary supersaturation with respect to calcium oxalate (CaOx) and calcium phosphate (CaP) are generally achieved at different locations in the renal tubules. As a result experimental induction of hyperoxaluria in animals with CaP deposits does not lead to growth of CaOx over CaP. Interstitial nephrocalcinosis has been seen in mice with lack of crystallization modulators Tamm–Horsfall protein and osteopontin. Sodium phosphate co-transporter or sodiumhydrogen exchanger regulator factor-1 null mice also produced interstitial nephrocalcinosis. Crystals plug the tubules by aggregating and attaching to the luminal cell surface. Structural features of the renal tubules also play a role in crystal retention. The crystals plugging the terminal collecting ducts when exposed to the metastable pelvic urine may promote the formation of stone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Evan AP (2010) Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr Nephrol 25(5):831–841

    Article  PubMed  Google Scholar 

  2. Randall A (1937) The origin and growth of renal calculi. Ann Surg 105:1009

    Article  CAS  PubMed  Google Scholar 

  3. Low RK, Stoller ML (1997) Endoscopic mapping of renal papillae for Randall’s plaques in patients with urinary stone disease. J Urol 158:2062

    Article  CAS  PubMed  Google Scholar 

  4. Low RK, Stoller ML, Schreiber CK (2000) Metabolic and urinary risk factors associated with Randall’s papillary plaques. J Endourol 14:507

    Article  CAS  PubMed  Google Scholar 

  5. Stoller ML, Low RK, Shami GS et al (1996) High resolution radiography of cadaveric kidneys: unraveling the mystery of Randall’s plaque formation. J Urol 156:1263

    Article  CAS  PubMed  Google Scholar 

  6. Evan AP, Coe FL, Lingeman JE et al (2006) Renal crystal deposits and histopathology in patients with cystine stones. Kidney Int 69:2227

    Article  CAS  PubMed  Google Scholar 

  7. Evan AP, Lingeman J, Coe F et al (2007) Renal histopathology of stone-forming patients with distal renal tubular acidosis. Kidney Int 71:795

    Article  CAS  PubMed  Google Scholar 

  8. Evan AP, Lingeman JE, Coe FL et al (2005) Crystal-associated nephropathy in patients with brushite nephrolithiasis. Kidney Int 67:576

    Article  CAS  PubMed  Google Scholar 

  9. Evan AP, Lingeman JE, Coe FL et al (2008) Role of interstitial apatite plaque in the pathogenesis of the common calcium oxalate stone. Semin Nephrol 28:111

    Article  CAS  PubMed  Google Scholar 

  10. Evan AP, Lingeman JE, Coe FL et al (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J Clin Invest 111:607

    CAS  PubMed  Google Scholar 

  11. Evan AP, Coe FL, Gillen D et al (2008) Renal intratubular crystals and hyaluronan staining occur in stone formers with bypass surgery but not with idiopathic calcium oxalate stones. Anat Rec (Hoboken) 291:325

    Google Scholar 

  12. Khan SR, Finlayson B, Hackett R (1984) Renal papillary changes in patient with calcium oxalate lithiasis. Urology 23:194

    Article  CAS  PubMed  Google Scholar 

  13. Asplin JR, Mandel NS, Coe FL (1996) Evidence of calcium phosphate supersaturation in the loop of Henle. Am J Physiol 270:F604

    CAS  PubMed  Google Scholar 

  14. Conyers RA, Bais R, Rofe AM (1986) Oxalosis and the E-Ferol toxicity syndrome. JAMA 256:2677

    Article  CAS  PubMed  Google Scholar 

  15. Khan SR (1997) Animal models of kidney stone formation: an analysis. World J Urol 15:236

    Article  CAS  PubMed  Google Scholar 

  16. McMartin K (2009) Are calcium oxalate crystals involved in the mechanism of acute renal failure in ethylene glycol poisoning? Clin Toxicol (Phila) 47:859

    CAS  Google Scholar 

  17. Khan SR, Finlayson B, Hackett RL (1979) Histologic study of the early events in oxalate induced intranephronic calculosis. Invest Urol 17:199

    CAS  PubMed  Google Scholar 

  18. Khan SR, Finlayson B, Hackett RL (1982) Experimental calcium oxalate nephrolithiasis in the rat. Role of the renal papilla. Am J Pathol 107:59

    CAS  PubMed  Google Scholar 

  19. Khan SR, Hackett RL (1991) Retention of calcium oxalate crystals in renal tubules. Scanning Microsc 5:707

    CAS  PubMed  Google Scholar 

  20. Khan SR, Finlayson B, Hackett RL (1983) Experimental induction of crystalluria in rats using mini-osmotic pumps. Urol Res 11:199

    Article  CAS  PubMed  Google Scholar 

  21. Marengo SR, Chen DH, Evan AP et al (2006) Continuous infusion of oxalate by minipumps induces calcium oxalate nephrocalcinosis. Urol Res 34:200

    Article  CAS  PubMed  Google Scholar 

  22. Marengo SR, Zhang A, Traverso EJ (2008) Partitioning of 14C-oxalate excretion in rats during a persistent oxalate challenge. Urol Res 36:319

    Article  CAS  PubMed  Google Scholar 

  23. Khan SR, Glenton PA, Byer KJ (2006) Modeling of hyperoxaluric calcium oxalate nephrolithiasis: experimental induction of hyperoxaluria by hydroxy-l-proline. Kidney Int 70:914

    Article  CAS  PubMed  Google Scholar 

  24. de Bruijn WC, Boeve ER, van Run PR et al (1995) Etiology of calcium oxalate nephrolithiasis in rats I. Can this be a model for human stone formation? Scanning Microsc 9:103

    PubMed  Google Scholar 

  25. de Water R, Noordermeer C, van der Kwast TH et al (1999) Calcium oxalate nephrolithiasis: effect of renal crystal deposition on the cellular composition of the renal interstitium. Am J Kidney Dis 33:761

    Article  PubMed  Google Scholar 

  26. Khan SR, Shevock PN, Hackett RL (1992) Acute hyperoxaluria, renal injury and calcium oxalate urolithiasis. J Urol 147:226

    CAS  PubMed  Google Scholar 

  27. Khan SR, Thamilselvan S (2000) Nephrolithiasis: a consequence of renal epithelial cell exposure to oxalate and calcium oxalate crystals. Mol Urol 4:305

    CAS  PubMed  Google Scholar 

  28. Khan SR, Shevock PN, Hackett RL (1989) Urinary enzymes and calcium oxalate urolithiasis. J Urol 142:846

    CAS  PubMed  Google Scholar 

  29. Thamilselvan S, Hackett RL, Khan SR (1997) Lipid peroxidation in ethylene glycol induced hyperoxaluria and calcium oxalate nephrolithiasis. J Urol 157:1059

    Article  CAS  PubMed  Google Scholar 

  30. Thamilselvan S, Menon M (2005) Vitamin E therapy prevents hyperoxaluria-induced calcium oxalate crystal deposition in the kidney by improving renal tissue antioxidant status. BJU Int 96:117

    Article  CAS  PubMed  Google Scholar 

  31. Khan SR (2004) Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies. Clin Exp Nephrol 8:75

    Article  CAS  PubMed  Google Scholar 

  32. Toblli JE, Ferder L, Stella I et al (2002) Enalapril prevents fatty liver in nephrotic rats. J Nephrol 15:358

    CAS  PubMed  Google Scholar 

  33. Toblli JE, Ferder L, Stella I et al (2002) Effects of angiotensin II subtype 1 receptor blockade by losartan on tubulointerstitial lesions caused by hyperoxaluria. J Urol 168:1550

    Article  CAS  PubMed  Google Scholar 

  34. Umekawa T, Hatanaka Y, Kurita T et al (2004) Effect of angiotensin II receptor blockage on osteopontin expression and calcium oxalate crystal deposition in rat kidneys. J Am Soc Nephrol 15:635

    Article  CAS  PubMed  Google Scholar 

  35. Khan SR, Kok DJ (2004) Modulators of urinary stone formation. Front Biosci 9:1450

    Article  CAS  PubMed  Google Scholar 

  36. Gokhale JA, Glenton PA, Khan SR (1996) Localization of Tamm–Horsfall protein and osteopontin in a rat nephrolithiasis model. Nephron 73:456

    Article  CAS  PubMed  Google Scholar 

  37. Gokhale JA, Glenton PA, Khan SR (1997) Biochemical and quantitative analysis of Tamm–Horsfall protein in rats. Urol Res 25:347

    Article  CAS  PubMed  Google Scholar 

  38. Marengo SR, Chen DH, Kaung HL et al (2002) Decreased renal expression of the putative calcium oxalate inhibitor Tamm–Horsfall protein in the ethylene glycol rat model of calcium oxalate urolithiasis. J Urol 167:2192

    Article  CAS  PubMed  Google Scholar 

  39. Katsuma S, Shiojima S, Hirasawa A et al (2002) Global analysis of differentially expressed genes during progression of calcium oxalate nephrolithiasis. Biochem Biophys Res Commun 296:544

    Article  CAS  PubMed  Google Scholar 

  40. Khan SR, Johnson JM, Peck AB et al (2002) Expression of osteopontin in rat kidneys: induction during ethylene glycol induced calcium oxalate nephrolithiasis. J Urol 168:1173

    Article  CAS  PubMed  Google Scholar 

  41. Suzuki K, Tanaka T, Miyazawa K et al (1999) Gene expression of prothrombin in human and rat kidneys: basic and clinical approach. J Am Soc Nephrol 10(Suppl 14):S408

    CAS  PubMed  Google Scholar 

  42. Iida S, Inoue M, Yoshii S et al (1999) Molecular detection of heparan sulfate proteoglycan mRNA in rat kidney during calcium oxalate nephrolithiasis. J Am Soc Nephrol 10(Suppl 14):S412

    CAS  PubMed  Google Scholar 

  43. Moriyama MT, Glenton PA, Khan SR (2001) Expression of inter-alpha inhibitor related proteins in kidneys and urine of hyperoxaluric rats. J Urol 165:1687

    Article  CAS  PubMed  Google Scholar 

  44. Mandel NS, Henderson JD Jr, Hung LY et al (2004) A porcine model of calcium oxalate kidney stone disease. J Urol 171:1301

    Article  CAS  PubMed  Google Scholar 

  45. Kaplon DM, Penniston KL, Darriet C et al (2010) Hydroxyproline-induced hyperoxaluria using acidified and traditional diets in the porcine model. J Endourol 24(3):355–359

    Article  PubMed  Google Scholar 

  46. Mo L, Liaw L, Evan AP et al (2007) Renal calcinosis and stone formation in mice lacking osteopontin, Tamm–Horsfall protein, or both. Am J Physiol Renal Physiol 293:F1935

    Article  CAS  PubMed  Google Scholar 

  47. Wesson JA, Johnson RJ, Mazzali M et al (2003) Osteopontin is a critical inhibitor of calcium oxalate crystal formation and retention in renal tubules. J Am Soc Nephrol 14:139

    Article  CAS  PubMed  Google Scholar 

  48. Okada A, Nomura S, Higashibata Y et al (2007) Successful formation of calcium oxalate crystal deposition in mouse kidney by intraabdominal glyoxylate injection. Urol Res 35:89

    Article  CAS  PubMed  Google Scholar 

  49. Okada A, Yasui T, Hamamoto S et al (2009) Genome-wide analysis of genes related to kidney stone formation and elimination in the calcium oxalate nephrolithiasis model mouse: detection of stone-preventive factors and involvement of macrophage activity. J Bone Miner Res 24:908

    Article  CAS  PubMed  Google Scholar 

  50. Khan SR, Glenton PA (2008) Calcium oxalate crystal deposition in kidneys of hypercalciuric mice with disrupted type IIa sodium-phosphate cotransporter. Am J Physiol Renal Physiol 294:F1109

    Article  CAS  PubMed  Google Scholar 

  51. Bushinsky DA, Frick KK, Nehrke K (2006) Genetic hypercalciuric stone-forming rats. Curr Opin Nephrol Hypertens 15:403

    Article  CAS  PubMed  Google Scholar 

  52. Bushinsky DA, Parker WR, Asplin JR (2000) Calcium phosphate supersaturation regulates stone formation in genetic hypercalciuric stone-forming rats. Kidney Int 57:550

    Article  CAS  PubMed  Google Scholar 

  53. Bushinsky DA, Grynpas MD, Asplin JR (2001) Effect of acidosis on urine supersaturation and stone formation in genetic hypercalciuric stone-forming rats. Kidney Int 59:1415

    Article  CAS  PubMed  Google Scholar 

  54. Bushinsky DA, Asplin JR, Grynpas MD et al (2002) Calcium oxalate stone formation in genetic hypercalciuric stone-forming rats. Kidney Int 61:975

    Article  CAS  PubMed  Google Scholar 

  55. Okamoto N, Aruga S, Tomita K et al (2007) Chronic acid ingestion promotes renal stone formation in rats treated with vitamin D3. Int J Urol 14:60

    Article  CAS  PubMed  Google Scholar 

  56. Khan SR, Glenton PA (1995) Deposition of calcium phosphate and calcium oxalate crystals in the kidneys. J Urol 153:811

    Article  CAS  PubMed  Google Scholar 

  57. Hennequin C, Tardivel S, Medetognon J et al (1998) A stable animal model of diet-induced calcium oxalate crystalluria. Urol Res 26:57

    Article  CAS  PubMed  Google Scholar 

  58. Serafini-Cessi F, Malagolini N, Cavallone D (2003) Tamm–Horsfall glycoprotein: biology and clinical relevance. Am J Kidney Dis 42:658

    Article  CAS  PubMed  Google Scholar 

  59. Atmani F, Glenton PA, Khan SR (1998) Identification of proteins extracted from calcium oxalate and calcium phosphate crystals induced in the urine of healthy and stone forming subjects. Urol Res 26:201

    Article  CAS  PubMed  Google Scholar 

  60. Hess B, Nakagawa Y, Coe FL (1989) Inhibition of calcium oxalate monohydrate crystal aggregation by urine proteins. Am J Physiol 257:F99

    CAS  PubMed  Google Scholar 

  61. Glauser A, Hochreiter W, Jaeger P et al (2000) Determinants of urinary excretion of Tamm–Horsfall protein in non-selected kidney stone formers and healthy subjects. Nephrol Dial Transplant 15:1580

    Article  CAS  PubMed  Google Scholar 

  62. Jaggi M, Nakagawa Y, Zipperle L et al (2007) Tamm–Horsfall protein in recurrent calcium kidney stone formers with positive family history: abnormalities in urinary excretion, molecular structure and function. Urol Res 35:55

    Article  CAS  PubMed  Google Scholar 

  63. Hess B, Nakagawa Y, Parks JH et al (1991) Molecular abnormality of Tamm–Horsfall glycoprotein in calcium oxalate nephrolithiasis. Am J Physiol 260:F569

    CAS  PubMed  Google Scholar 

  64. Mo L, Huang HY, Zhu XH et al (2004) Tamm–Horsfall protein is a critical renal defense factor protecting against calcium oxalate crystal formation. Kidney Int 66:1159

    Article  CAS  PubMed  Google Scholar 

  65. Bates JM, Raffi HM, Prasadan K et al (2004) Tamm–Horsfall protein knockout mice are more prone to urinary tract infection: rapid communication. Kidney Int 65:791

    Article  CAS  PubMed  Google Scholar 

  66. Anderson JC, Williams JC Jr, Evan AP et al (2007) Analysis of urinary calculi using an infrared microspectroscopic surface reflectance imaging technique. Urol Res 35:41

    Article  CAS  PubMed  Google Scholar 

  67. Beck L, Karaplis AC, Amizuka N et al (1998) Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci USA 95:5372

    Article  CAS  PubMed  Google Scholar 

  68. Tenenhouse HS, Gauthier C, Martel J et al (2002) Na/P(i) cotransporter (Npt2) gene disruption increases duodenal calcium absorption and expression of epithelial calcium channels 1 and 2. Pflugers Arch 444:670

    Article  CAS  PubMed  Google Scholar 

  69. Chau H, El-Maadawy S, McKee MD et al (2003) Renal calcification in mice homozygous for the disrupted type IIa Na/Pi cotransporter gene Npt2. J Bone Miner Res 18:644

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed R. Khan.

Additional information

Proceedings paper from the 3rd International Urolithiasis Research Symposium, Indianapolis, Indiana, USA, 3–4 December 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, S.R. Nephrocalcinosis in animal models with and without stones. Urol Res 38, 429–438 (2010). https://doi.org/10.1007/s00240-010-0303-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-010-0303-4

Keywords

Navigation