Skip to main content
Log in

Animal models of kidney stone formation: an analysis

  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Calcific kidney stones in both humans and mildly hyperoxaluric rats are located on renal papillary surfaces and consist of an organic matrix and crystals of calcium oxalate and/or calcium phosphate. The matrix is intimately associated with the crystals and contains substances that can promote as well as inhibit calcification. Osteopontin, Tamm-Horsfall protein, bikunin, and prothrombin fragment 1 have been identified in matrices of both human and rat stones. Hyperoxaluria can provoke calcium oxalate nephrolithiasis in both humans and rats. Kidney-stone-forming rats are hypomagnesuric and hypocitraturic during nephrolithiasis. Human stone formers may have the same disorders. Males of both species are prone to develop calcium oxalate nephrolithiasis, whereas females tend to form calcium phosphate stones. Oxalate metabolism is considered to be almost identical between rats and humans. Thus, there are many similarities between experimental nephrolithiasis induced in rats and human kidney-stone formation, and a rat model of calcium oxalate nephrolithiasis can be used to investigate the mechanisms involved in human kidney stone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson CK (1990) The anatomical aspects of stone disease. In: Wickham JEA, Colin Buck A (eds) Renal tract stone — metabolic basis and clinical practice. Churchill Livingston, New York, pp 115–132

    Google Scholar 

  2. Anderson L, McDonald JR (1946) The origin, frequency, and significance of microscopic calculi in the kidney. Surg Gynecol Obstet 82: 275–286

    Google Scholar 

  3. Bachmann S, Metzger R, Bunnemann B (1990) Tamm-Horsfall protein-mRNA synthesis is localized to the thick ascending limb of Henle's loop in rat kidney. Histochemistry 94: 517–523

    PubMed  Google Scholar 

  4. Baggio B, Gambaro G, Ossi E, Favaro S, Borsatti A (1983) Increased urinary excretion of renal enzymes in idiopathic calcium oxalate nephrolithiasis. J Urol 129: 1161–1165

    PubMed  Google Scholar 

  5. Boyce WH, Garvey FK (1956) The amount and nature of the organic matrix of urinary calculi, a review. J Urol 76: 213–227

    PubMed  Google Scholar 

  6. Buck CA (1990) Animal models of stone disease. In: Wickham JEA, Colin Buck A (eds) Renal tract stone-metabolic basis and clinical practice. Churchill Livingston, New York, pp 149–161

    Google Scholar 

  7. Bushinsky DA, Grynpas MD, Nilsson EL, Nakagawa Y, Coe FL (1995) Stone formation in genetic hypercalciuric rats. Kidney Int 48: 1705–1713

    PubMed  Google Scholar 

  8. Coe FL, Parks JH (1988) Pathophysiology of kidney stones and strategies for treatment. Hosp Pract [off] 23: 145–168

    Google Scholar 

  9. Coe FL, Nakagawa Y, Parks JH (1991) Inhibitors within the nephron. Am J Kidney Dis 17: 407–413

    PubMed  Google Scholar 

  10. Finlayson B (1977) Calcium stones: some physical and clinical aspects. In: David DS (ed) Calcium metabolism in renal failure and nephrolithiasis. Wiley, New York, pp 337–382

    Google Scholar 

  11. Finlayson B (1978) Physicochemical aspects of urolithiasis. Kidney Int 13: 344–360

    PubMed  Google Scholar 

  12. Finlayson B, Khan SR, Hackett RL (1990) Theoretical chemical models of urinary stone. In: Wickham JEA, Colin Buck A (eds) Renal tract stone — metabolic basis and clinical practice. Churchill Livingston, New York, pp 133–147

    Google Scholar 

  13. Geary CP, Cousins FB (1969) An oestrogen-linked nephrocalcinosis in rats. Br J Exp Pathol 50: 507–515

    PubMed  Google Scholar 

  14. Gokhale JA, Glenton PA, Khan SR (1996) Localization of Tamm-Horsfall protein and osteopontin in a rat nephrolithiasis model. Nephron 73: 456–461

    PubMed  Google Scholar 

  15. Gokhale JA, McKee MD, Khan SR (1996) Immunocytochemical localization of Tamm-Horsfall protein in the kidneys of normal and nephrolithic rats. Urol Res 24: 201–209

    PubMed  Google Scholar 

  16. Hackett RL, Shevock PN, Khan SR (1990) Cell injury associated calcium oxalate crystalluria. J Urol 144: 1535–1538

    PubMed  Google Scholar 

  17. Hackett RL, Shevock PN, Khan SR (1994) Inhibition of calcium oxalate monohydrate seed crystal growth is decreased in renal injury. In: Ryall R (ed) Urolithiasis, vol 2. Plenum, New York, pp 343–344

    Google Scholar 

  18. Hatch M (1993) Oxalate status in stone formers, two distinct hyperoxaluric entities. Urol Res 21: 55–59

    PubMed  Google Scholar 

  19. Hatch M, Schperts A, Grunberger I, Godee CJ (1991) A retrospective analysis of the metabolic status of stone formers in New York metropolitan area. NY State Med J 91: 196–199

    Google Scholar 

  20. Hess B, Nakagawa Y, Parks JH, Coe FL (1991) Molecular abnormality of Tamm-Horsfall glycoprotein in calcium oxalate nephrolithiasis. Am J Physiol 265: F784–791

    Google Scholar 

  21. Jaeger P, Portman L, Ginalski J-M, Jacqeut A-F, Temler E, Burkhardt P (1986) Tubulopathy in nephrolithiasis: consequence rather than cause. Kidney Int 29: 563–575

    PubMed  Google Scholar 

  22. Khan SR (1991) Pathogenesis of oxalate urolithiasis: lessons from experimental studies with rats. Am J Kidney Dis 17: 398–401

    PubMed  Google Scholar 

  23. Khan SR (1995) Experimental calcium oxalate nephrolithiasis and the formation of human urinary stones. Scanning Microsc 9: 89–101

    PubMed  Google Scholar 

  24. Khan SR (1996) Calcium oxalate crystal interaction with renal tubular epithelium, mechanism of crystal adhesion and its impact on stone development. Urol Res 23: 71–79

    Google Scholar 

  25. Khan SR, Glenton PA (1995) Deposition of calcium phosphate and calcium oxalate crystals in the kidneys. J Urol 153: 811–817

    PubMed  Google Scholar 

  26. Khan SR, Glenton PA (1996) Increase in urinary excretion of lipids by patients with kidney stones. Br J Urol 77: 506–511

    PubMed  Google Scholar 

  27. Khan SR, Hackett RL (1985) Developmental morphology of calcium oxalate foreign body stones in rats. Calcif Tissue Int 37: 165–173

    PubMed  Google Scholar 

  28. Khan SR, Hackett RL (1985) Calcium oxalate urolithiasis in the rat: is it a model for human stone disease? A review of recent literature. Scanning Microsc 2: 759–774

    Google Scholar 

  29. Khan SR, Hackett RL (1987) Urolithigenesis of mixed foreign body stones. J Urol 138: 1321–1328

    PubMed  Google Scholar 

  30. Khan SR, Hackett RL (1993) Role of organic matrix in urinary stone formation: an ultrastructural study of crystal matrix interface of calcium oxalate monohydrate stones. J Urol 150: 239–245

    PubMed  Google Scholar 

  31. Khan SR, Shevock PN, Hackett RL (1988) Presence of lipids in urinary stones: results of preliminary studies. Calcif Tissue Int 42: 91–96

    PubMed  Google Scholar 

  32. Khan SR, Shevock PN, Hackett RL (1989) Urinary enzymes and calcium oxalate urolithiasis. J Urol 142: 846–849

    PubMed  Google Scholar 

  33. Khan SR, Shevock PN, Hackett RL (1992) Acute hyperoxaluria, renal injury and calcium oxalate urolithiasis. J Urol 147:226–230

    Google Scholar 

  34. Khan SR, Atmani F, Glenton P, Hou Z-C, Talham DR, Khurshid M (1996) Lipids and membranes in the organic matrix of urinary calcitic crystals and stones. Calcif Tissue Int 59: 357–365

    PubMed  Google Scholar 

  35. Kleinman JG, Bushinsky A, Worcester EM, Brown D (1995) Expression of osteopontin, a urinary inhibitor of stone mineral crystal growth in rat kidney. Kidney Int 47: 1585–1596

    PubMed  Google Scholar 

  36. Kok DJ, Khan SR (1994) Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 46: 847–854

    PubMed  Google Scholar 

  37. Lee YH, Huang WC, Chiang H, Chen MT, Huang JK, Chang LS (1992) Determinant role of testosterone in the pathogenesis of urolithiasis in rats. J Urol 147: 1134–1138

    PubMed  Google Scholar 

  38. Lyon ES, Borden TA, Vermeulen CW (1966) Experimental oxalate nephrolithiasis produced with ethylene glycol. Invest Urol 4: 143–151

    PubMed  Google Scholar 

  39. McKee MD, Nanci A, Khan SR (1995) Ultrastructural immunodetection of osteopontin and osteocalcin as major matrix components of renal calculi. J Bone Miner Res 10: 1913–1929

    PubMed  Google Scholar 

  40. Nguyen HT, Woodward JC (1980) Intranephronic calculosis in rats. Am J Pathol 100: 39–56

    PubMed  Google Scholar 

  41. Oliver J, MacDowell M, Whang R, Welt LG (1966) The renal lesions of electrolyte imbalance. IV. The intranephronic calculosis of experimental magnesium depletion. J Exp Med 124: 263–265

    PubMed  Google Scholar 

  42. Otnes B (1980) Sex differences in the crystalline composition of stones from upper urinary tract. Scand J Urol Nephrol 14: 51–56

    PubMed  Google Scholar 

  43. Pak CYC (1991) Etiology and treatment of urolithiasis. Am J Kidney Dis 18: 624–637

    PubMed  Google Scholar 

  44. Randall A (1940) The etiology of primary renal calculus. Int Abstr Surg 71: 209–240

    Google Scholar 

  45. Robertson WG, Peacock M (1980) The cause of idiopathic calcium stone disease: hypercalciuria or hyperoxaluria. Nephron 26: 105–110

    PubMed  Google Scholar 

  46. Robertson WG, Peacock M, Marshall RW (1974) Saturationinhibition index as a measure of the risk of calcium oxalate stone formation in the urinary tract. N Engl J Med 294: 249–252

    Google Scholar 

  47. Rouiller C (1969) General anatomy and histology of the kidney. In: Rouiller C, Muller AF (eds) The kidney; morphology, biochemistry, physiology. Academic Press, New York, pp 61–155

    Google Scholar 

  48. Rushton HG, Spector M (1982) Effects of magnesium deficiency on intratubular calcium oxalate formation and crystalluria in hyperoxaluric rats. J Urol 127: 598–604

    PubMed  Google Scholar 

  49. Stapleton AMF, Seymour AE, Brennan JS, Doyle IR, Marshall VR, Ryall RL (1993) Immunohistochemical distribution and quantification of crystal matrix protein. Kidney Int 44: 817–824

    PubMed  Google Scholar 

  50. Su C-J, Shevock PN, Khan SR, Hackett RL (1991) Effect of magnesium on calcium oxalate urolithiasis. J Urol 145: 1092–1094

    PubMed  Google Scholar 

  51. Vermeulen CW, Grove WG; Goetz R, Ragins HD, Correll NO (1950) Experimental urolithiasis. I. Development of calculi upon foreign bodies surgically introduced into bladders of rats. J Urol 64: 541–548

    PubMed  Google Scholar 

  52. Watanabe T (1972) Histochemical studies on mucosubstances in urinary stones. Tohoku J Exp Med 107: 345–357

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, S.R. Animal models of kidney stone formation: an analysis. World J Urol 15, 236–243 (1997). https://doi.org/10.1007/BF01367661

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01367661

Keywords

Navigation