Skip to main content

Advertisement

Log in

Pyrrolidine dithiocarbamate attenuate shock wave induced MDCK cells injury via inhibiting nuclear factor-kappa B activation

  • Original Paper
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

Shock wave lithotripsy (SWL)-induced renal damage appears to be multifactorial. Recent data indicated that the mechanism of renal tissue damage secondary to SWL is similar to that of ischemia reperfusion injury. Nuclear factor-kappa B (NFκB) and its target genes, inducible nitric oxide synthase (iNOS) and cyclooxygense-2 (COX-2), have been demonstrated to play a very important role in a variety of cells or tissues ischemia reperfusion injuries. Thus in the present study, using an in vitro model MDCK cells, we investigated the role of NFκB and its target cytotoxic enzyme in shock wave-induced renal cellular damage. We also examined whether inhibition this pathway by pyrrolidine dithiocarbamate (PDTC) is contributed to alleviate SWL-caused cell damage. Suspensions of MDCK cells were placed in containers for shock wave exposure. Three groups of six containers each were examined: control group, no shock wave treatment and SWL group, which received 100 shocks at 18 kV; 3 SWL + PDTC group. PDTC were added to the suspensions before shock wave exposure. After shock wave 0, 2, 4, 6 and 8 h, respectively, the cell supernatants were detected for the level of MDA and release of LDH. At post-shock wave 8 h, cells were harvested to detect the nuclear translocation of NFκBp65 by immunofluorescence staining. Degradation of IκB-а (an inhibitor protein of NFκB) and expression of iNOS and COX-2 were also examined by western blotting. Our results indicated that shock wave initiated the apparent activation of NFκB, which in turn induced high expression of iNOS and COX-2. Blocking degradation of IκB-а by PDTC was contributed to decrease the expression of iNOS. And the level of MDA and the release of LDH were also significantly reduced by using PDTC. However, the degree of COX-2 expression does not differ significantly between SWL and SWL + PDTC groups. Activation of NFκB and subsequent expression of its target cytotoxic enzyme have been demonstrated to be a potential and crucial mechanism in SWL-induced renal cell damage. Blocking this pathway by PDTC is contributed to protect against cellular damage from shock wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Williams JC Jr, Stonehill MA, Colmenares K, Evan AP, Andreoli SP, Cleveland RO, Bailey MR, Crum LA, McAteer JA (1999) Effect of macroscopic air bubbles on cell lysis by shock wave lithotripsy in vitro. Ultrasound Med Biol 25:473–479

    Article  PubMed  Google Scholar 

  2. Munver R, Delvecchio F, Kuo RL, Brown SA, Zhong P, Preminger GM (2002) In vivo assessment of free radical activity during shock wave lithotripsy using a microdialysis system: the renoprotective action of allopurinol. J Urol 167:327–334

    Article  PubMed  CAS  Google Scholar 

  3. Xiang L, He DL, Cheng XF, Zhang LL, Yu LH, Li JJ (2005) Effects of components isolated from Astragalus mengholicus on expression of P-selectin in shock wave induced kidney injury in rabbit model. Zhongguo Zhong Yao Za Zhi 20:1609–1609

    Google Scholar 

  4. Delvecchio F, Auge Bk, Munver R, Brown SA, Brizuela R, Zhong P, Preminger GM (2003) Shock wave lithotripsy causes ipsilateral renal injury remote from the focal point: the role of regional vasoconstriction. J Urol 169:1526–1529

    Article  PubMed  CAS  Google Scholar 

  5. Willis LR, Evan AP, Connor BA, Reed G, Fineberg NS, Lingeman JA (1996) Effects of extracorporeal shock wave lithotripsy to one kidney on bilateral glomerular filtration rate and PAH clearance in mini pigs. J Urol 156:1502–1507

    Article  PubMed  CAS  Google Scholar 

  6. Suzuki A, Kudoh S, Mori K, Takahashi N, Suzuki T (2004) Expression of nitric oxide inducible nitric oxide synthase in acute renal allograft refection in the rat. Int J Urol 11:837–844

    Article  PubMed  CAS  Google Scholar 

  7. Chien CH, Hwu Cm, Liou TL, Huang ZL, Shen AR, Yang VH, Lee CW, Chien EJ (2006) Inducible nitric oxide synthase expression and plasma bilirubin changes in rats under intermitten hypoxia treatment. Chin J Physiol 49:275–280

    PubMed  CAS  Google Scholar 

  8. Lahde M, Korhonen R, Moilanen E (2000) Regulation of nitric oxide production in cultured human T84 intestinal epithelial cells by nuclear factor-κB dependent induction of inducible nitric oxide synthase after exposure to bacterial endotoxin. Aliment Pharmacol Ther 14:945–954

    Article  PubMed  CAS  Google Scholar 

  9. Ito Y, Katagiri H, Ishii K, Kakita A, Hayashi I, Majima M (2003) Effects of selective cyclooxygenase inhibitors on ischemia/reperfusion-induced hepatic microcirculatory dysfunction in mice. Eur Surg Res 35:408–416

    Article  PubMed  CAS  Google Scholar 

  10. Dimayuga FO, Wang C, Clark JM, Dimayuga ER, Dimayuga VM, Bruce Keller AJ (2007) SOD1 over expression alters ROS production and reduces neurotoxic inflammatory signaling in microglial cells. J Neruoimmunol 182:189–199

    Google Scholar 

  11. Eliseev RA, Zuscik MJ, Schwarz EM, O’Keefe RJ, Drissi H, Rosier RN (2005) Increased radiation-induced apoptosis of Saos2 cells via inhibition of NF-kappaB: a role for c-Jun N-terminal kinase. J Cell Biochem 96:1262–1273

    Article  PubMed  CAS  Google Scholar 

  12. Davis ME, Grumbach IM, Fukai T, Cutchins A, Harrison DG (2004) Shear stress regulates endothelial nitric-oxide synthase promoter activity through nuclear factor kappaB binding. J Biol Chem 279:163–168

    Article  PubMed  CAS  Google Scholar 

  13. Suetsugu H, Iimuro Y, Uehara T, Nishio T, Harada N, Yoshida M, Hatano E, Son G, Fujimoto J, Yamaoka Y (2005) Nuclear factor-kappaB inactivation in the rat liver ameliorates short term total warm ischemia/reperfusion injury. Gut 54:835–842

    Article  PubMed  CAS  Google Scholar 

  14. Adams V, Nehrhoff B, Spate U, Linke A, Schulze PC, Baur A, Gielen S, Hambrecht R, Schuler G (2002) Induction of iNOS expression in skeletal muscle by IL-1beta and NF-kappaB activation: an in vitro and in vivo study. Cardiovasc Res 54:95–104

    Article  PubMed  CAS  Google Scholar 

  15. Nakao S, Ogtata Y, Shimizu E, Yamazaki M, Furuyama S, Sugiya H (2002) Tumor necrosis factor alpha (TNF-alpha)-induced prostaglandin E2 release is mediated by the activation of cyclooxygenase-2 (COX-2) transcription via NF-kappaB in human gingival fibroblasts. Mol Cell Biochem 238:11–18

    Article  PubMed  CAS  Google Scholar 

  16. Lin CI, Chen CN, Chen JH, Lee H (2006) Lysophospholipids increase IL-8 and MCP-1 expressions in human umbilical cord vein endothelial cells through an IL-1-dependent mechanism. J Cell Biochem 99:1216–1232

    Article  PubMed  CAS  Google Scholar 

  17. Jan CR, Chen WC, Lee YH, Huang JK, Ou HC, Tseng CJ (1997) Allopurinol blocks shock-wave-induced rises in cytosolic calcium levels in MDCD cell. Urol Res 25:427–432

    Article  PubMed  CAS  Google Scholar 

  18. Jaeger P, Redha F, Marquardt K, Uhlschmid G, Hauri D (1995) Morphological and functional changes in canine kidneys following extracorporeal shock wave treatment. Urol Int 54:48–58

    Article  PubMed  CAS  Google Scholar 

  19. Evan AP, Wills LR, Mc Ateer JA, Bailey MR, Connors BA, Shao Y, Lingeman JE, Williams JC Jr, Finberg NS, Crum LA (2002) Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in shock wave lithotripsy. J Urol 168:1556–1562

    Article  PubMed  Google Scholar 

  20. Ogiste JS, Nejat RJ, Rashid HH, Greene T, Gupta M (2003) The role of mannitol in alleviating renal injury during extracorporeal shock wave lithotripsy. J Urol 169:875–877

    Article  PubMed  Google Scholar 

  21. Strohmaier WL, Billes IC, Abelius A, Lahme S, Bichler KH (2002) Selenium reduces high energy shock wave induced renal injury in rats. Urol Res 30:31–34

    Article  PubMed  CAS  Google Scholar 

  22. Ozguner F, Armagan A, Koyu A, Caliskan S, Koylu H (2005) A novel antioxidant agent caffeic acid phenethyl ester prevents shock wave-induced renal tubular oxidative stress. Urol Res 33:239–243

    Article  PubMed  CAS  Google Scholar 

  23. Li X, He D, Zhang L, Cheng X, Sheng B, Luo Y (2006) A novel antioxidant agent, astragalosides, prevents shock wave-induced renal oxidative injury in rabbits. Urol Res 34:277–282

    Article  PubMed  CAS  Google Scholar 

  24. Delvecchio FC, Brizuela RM, Khan SR, Byer K, Li Z, Zhong P, Preminger GM (2005) Citrate and vitamin E blunt the shock wave-induced free radical surge in an in vitro cell culture model. Urol Res 33:448–452

    Article  PubMed  CAS  Google Scholar 

  25. Midwest Urologic Stone Unit HennepinCounty Medical Center, Minneapolis. MN (1994) Renal function after extracorporeal shock wave lithotripsy to a solitary kidney. J Endourol 8:15–19

    Google Scholar 

  26. Chanani NK, Cowan DB, Takeuchi K, Poutias DN, Garcia LM, del Nido PJ, McGowan FX Jr (2002) Differential effects of amrinone and milrinone upon myocardial inflammatory signaling. Circulation 106:284–289

    Article  Google Scholar 

  27. Candelario-Jalil E, Gonzalez-Falcon A, Garcia-Cabrera M, Leon OS, Fiebich BL (2007) Post-ischaemic treatment with the cyclooxygenase-2 inhibitor nimesulide reduces blood-brain barrier disruption and leukocyte infiltration following transient focal cerebral ischaemia in rats. J Neurochem 100:1108–1120

    Article  PubMed  CAS  Google Scholar 

  28. Li G, Labruto F, Sirsjo A, Chen F, Vaage J, Valen G (2004) Myocardial protection by remote preconditioning: the role of nuclear factor kappa-B p105 and inducible nitric oxide synthase. Eur J Cardiothorac Surg 26:968–973

    Article  PubMed  Google Scholar 

  29. McDonald MC, Mota-Filipe H, Paul A, Cuzzocrea S, Abdelrahman M, Harwood S, Plevin R, Chatterjee PK, Yaqoob MM, Thiemermann C (2001) Calpain inhibitor I reduces the activation of nuclear factor-kappaB and organ injury/dysfunction in hemorrhagic shock. FASEB J 15:171–186

    Article  PubMed  CAS  Google Scholar 

  30. Tran K, Merika M, Thanos D (1997) Distinct functional properties of I-kappaB alpha and I-kappaB beta. Mol Cell Biol 17:5386–5399

    PubMed  CAS  Google Scholar 

  31. Karin M (1999) How NF-kappaB is activated: the role of the I-kappaB kinase (IKK) complex. Oncogene 18:6867–6874

    Article  PubMed  CAS  Google Scholar 

  32. Boaz M, Matas Z, Biro A, Katzir Z, Green M, Fainaru M, Smetana S (1999) Serum malondialdehyde and prevalent cardiovascular disease in hemodialysis. Kidney Int 56:1078–1083

    Article  PubMed  CAS  Google Scholar 

  33. Muia C, Mazzon E, Maiere D, Zito D, Di Paola R, Domenico S, Crisafulli C, Britti D, Cuzzocrea S (2006) Pyrrolidine dithiocarbamate reduced experimental periodontitis. Eur J Pharmacol 539:205–210

    Article  PubMed  CAS  Google Scholar 

  34. Krunkosky TM, Martin LD, Fischer BM, Voynow JA, Adler KB (2003) Effects of TNF-alpha on expression of ICAM-1 in human airway epithelial cells in vitro: oxidant-mediated pathways and transcription factors. Free Radic Biol Med 35:1158–1167

    Article  PubMed  CAS  Google Scholar 

  35. Ferreira ZS, Fernandes PA, Duma D, Assreuy J, Avellar MC, Markus RP (2005) Corticosterone modulates noradrenaline-induced melatonin synthesis through inhibition of nuclear factor kappa B. J Pineal Res 38:182–188

    Article  PubMed  CAS  Google Scholar 

  36. Ha T, Li Y, Gao X, McMullen JR, Shioi T, Izumo S, Kelley JL, Zhao A, Haddad GE, Williams DL, Browder IW, Kao RL, Li C (2005) Attenuation of cardiac hypertrophy by inhibiting both mTOR and NF-kappaB activation in vivo. Free Radic Biol Med 39:1570–1580

    Article  PubMed  CAS  Google Scholar 

  37. Bank N, Kiroycheva M, Singhal PC, Anthony GM, Southan GJ, Szabo C (2000) Inhibition of nitric oxide synthase ameliorates cellular injury in sickle cell mouse kidney. Kidney Int 58:82–89

    Article  PubMed  CAS  Google Scholar 

  38. Szabo C, Salzman AL (1996) Inhibition of terminal calcium overload protects against peroxynitrite-induced cellular injury in macrophages. Immunol Lett 51:163–167

    Article  PubMed  CAS  Google Scholar 

  39. Moberly JB, Harris SI, Riff DS, Dale JC, Breese T, McLaughlin P, Lawson J, Wan Y, Xu J, Truitt KE (2007) A randomized, double-blind, one-week study comparing effects of a novel COX-2 inhibitor and naproxen on the gastric mucosa. Dig Dis Sci 52:442–450

    Article  PubMed  CAS  Google Scholar 

  40. Cheng H, Wang S, Jo YI, Hao CM, Zhang M, Fan X, Kennedy C, Breyer MD, Moeckel GW, Harris RC (2007) Overexpression of cyclooxygenase-2 predisposes to podocyte injury. J Am Soc Nephrol 18:551–559

    Article  PubMed  CAS  Google Scholar 

  41. Hierholzer C, Harbrecht BG, Billiar TR, Tweardy DJ (2001) Hypoxia-inducible factor-1 activation and cyclo-oxygenase-2 induction are early reperfusion-independent inflammatory events in hemorrhagic shock. Arch Orthop Trauma Surg 121:219–222

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalin He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., He, D., Zhang, L. et al. Pyrrolidine dithiocarbamate attenuate shock wave induced MDCK cells injury via inhibiting nuclear factor-kappa B activation. Urol Res 35, 193–199 (2007). https://doi.org/10.1007/s00240-007-0105-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-007-0105-5

Keywords

Navigation