Skip to main content

Advertisement

Log in

Blockade of Indoleamine 2,3-Dioxygenase attenuates lipopolysaccharide-induced kidney injury by inhibiting TLR4/NF-κB signaling

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Blockade of indoleamine 2,3-dioxygenase (IDO) has been shown to alleviate lipopolysaccharide (LPS)-induced endotoxic shock and reduce sepsis mortality, but its effect on LPS-induced kidney damage has not been reported. Herein, we established a mouse kidney injury model by intraperitoneal injection of 10 mg/kg LPS and established an in vitro renal tubular epithelial cell injury model by stimulating TCMK-1 cells with 10 mg/L LPS. We found that pretreatment with 1-methyl tryptophan (1-MT), an IDO inhibitor, significantly improved LPS-induced mouse survival, and IDO knockout (KO) mice also had higher survival rates after LPS exposure than wild-type mice. At the same time, IDO KO or pretreatment with 1-MT not only reduced serum creatinine, blood urea nitrogen, renal tubular injury pathological score, but also inflammatory factors and oxidative stress status in serum or kidney of LPS-exposed mice. In vitro, blockade of IDO with 1-MT significantly inhibited LPS-induced apoptosis, inflammation and oxidative stress in TCMK-1 cells. In addition, blockade of IDO significantly inhibited LPS-activated TLR4/NF-κB signaling pathway in kidney of mice or in TCMK-1 cells. In conclusion, our results suggested that blockade of IDO attenuated kidney inflammation, apoptosis and oxidative stress to protect against LPS-induced septic kidney injury via inhibiting the TLR4/NF-κB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The datasets generated and/or used during the present study are available from the corresponding author upon reasonable request.

References

  1. Gyawali B, Ramakrishna K, Dhamoon AS. Sepsis: The evolution in definition, pathophysiology, and management. SAGE Open Med. 2019;7:2050312119835043. https://doi.org/10.1177/2050312119835043.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Font MD, Thyagarajan B, Khanna AK. Sepsis and septic shock - Basics of diagnosis, pathophysiology and clinical decision making. Med Clin North Am. 2020;104(4):573–85. https://doi.org/10.1016/j.mcna.2020.02.011.

    Article  PubMed  Google Scholar 

  3. Prest J, Sathananthan M, Jeganathan N. Current trends in sepsis-related mortality in the United States. Crit Care Med. 2021;49(8):1276–84. https://doi.org/10.1097/ccm.0000000000005017.

    Article  PubMed  Google Scholar 

  4. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the global Burden of disease study. Lancet. 2020;395(10219):200–11. https://doi.org/10.1016/s0140-6736(19)32989-7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. van Wagenberg L, Witteveen E, Wieske L, Horn J. Causes of mortality in ICU-Acquired weakness. J Intensive Care Med. 2020;35(3):293–6. https://doi.org/10.1177/0885066617745818.

    Article  PubMed  Google Scholar 

  6. Goulden R, Hoyle MC, Monis J, Railton D, Riley V, Martin P, et al. qSOFA, SIRS and NEWS for predicting inhospital mortality and ICU admission in emergency admissions treated as sepsis. Emerg Med J. 2018;35(6):345–9. https://doi.org/10.1136/emermed-2017-207120.

    Article  PubMed  Google Scholar 

  7. Majumdar A. Sepsis-induced acute kidney injury. Indian J Crit Care Med. 2010;14(1):14–21. https://doi.org/10.4103/0972-5229.63031.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang Y, Wang L, Meng L, Cao G, Wu Y. Sirtuin 6 overexpression relieves sepsis-induced acute kidney injury by promoting autophagy. Cell Cycle. 2019;18(4):425–36. https://doi.org/10.1080/15384101.2019.1568746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang G, Bao J, Shao X, Zhou W, Wu B, Ni Z, et al. Inhibiting pannexin-1 alleviates sepsis-induced acute kidney injury via decreasing NLRP3 inflammasome activation and cell apoptosis. Life Sci. 2020. https://doi.org/10.1016/j.lfs.2020.117791.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jin YH, Li ZT, Chen H, Jiang XQ, Zhang YY, Wu F. Effect of dexmedetomidine on kidney injury in sepsis rats through TLR4/MyD88/NF-κB/iNOS signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(11):5020–5. https://doi.org/10.26355/eurrev_201906_18094.

    Article  PubMed  Google Scholar 

  11. Zhong Y, Wu S, Yang Y, Li GQ, Meng L, Zheng QY, et al. LIGHT aggravates sepsis-associated acute kidney injury via TLR4-MyD88-NF-κB pathway. J Cell Mol Med. 2020;24(20):11936–48. https://doi.org/10.1111/jcmm.15815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol. 2004;4(10):762–74. https://doi.org/10.1038/nri1457.

    Article  CAS  PubMed  Google Scholar 

  13. Schmidt SV, Schultze JL. New Insights into IDO biology in bacterial and viral infections. Front Immunol. 2014;5:384. https://doi.org/10.3389/fimmu.2014.00384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moon JS, Cheong NR, Yang SY, Kim IS, Chung HJ, Jeong YW, et al. Lipopolysaccharide-induced indoleamine 2,3-dioxygenase expression in the periodontal ligament. J Periodontal Res. 2013;48(6):733–9. https://doi.org/10.1111/jre.12063.

    Article  CAS  PubMed  Google Scholar 

  15. O’Connor JC, Lawson MA, André C, Moreau M, Lestage J, Castanon N, et al. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry. 2009;14(5):511–22. https://doi.org/10.1038/sj.mp.4002148.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang J, Yi S, Li Y, Xiao C, Liu C, Jiang W, et al. The antidepressant effects of asperosaponin VI are mediated by the suppression of microglial activation and reduction of TLR4/NF-κB-induced IDO expression. Psychopharmacology. 2020;237(8):2531–45. https://doi.org/10.1007/s00213-020-05553-5.

    Article  CAS  PubMed  Google Scholar 

  17. Bahraoui E, Serrero M, Planès R. HIV-1 Tat - TLR4/MD2 interaction drives the expression of IDO-1 in monocytes derived dendritic cells through NF-κB dependent pathway. Sci Rep. 2020;10(1):8177. https://doi.org/10.1038/s41598-020-64847-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jung ID, Lee MG, Chang JH, Lee JS, Jeong YI, Lee CM, et al. Blockade of indoleamine 2,3-dioxygenase protects mice against lipopolysaccharide-induced endotoxin shock. J Immunol. 2009;182(5):3146–54. https://doi.org/10.4049/jimmunol.0803104.

    Article  CAS  PubMed  Google Scholar 

  19. Hoshi M, Osawa Y, Ito H, Ohtaki H, Ando T, Takamatsu M, et al. Blockade of indoleamine 2,3-dioxygenase reduces mortality from peritonitis and sepsis in mice by regulating functions of CD11b+ peritoneal cells. Infect Immun. 2014;82(11):4487–95. https://doi.org/10.1128/iai.02113-14.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang J, Tao J, Ling Y, Li F, Zhu X, Xu L, et al. Switch of NAD salvage to de novo biosynthesis sustains SIRT1-RelB-dependent inflammatory tolerance. Front Immunol. 2019;10:2358. https://doi.org/10.3389/fimmu.2019.02358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li J, Zhang Z, Wang L, Jiang L, Qin Z, Zhao Y, et al. Maresin 1 attenuates lipopolysaccharide-induced acute kidney injury via inhibiting NOX4/ROS/NF-κB pathway. Front Pharmacol. 2021. https://doi.org/10.3389/fphar.2021.782660.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xia S, Lin H, Liu H, Lu Z, Wang H, Fan S, et al. Honokiol attenuates sepsis-associated acute kidney injury via the inhibition of oxidative stress and inflammation. Inflammation. 2019;42(3):826–34. https://doi.org/10.1007/s10753-018-0937-x.

    Article  CAS  PubMed  Google Scholar 

  23. Ding Y, Zheng Y, Huang J, Peng W, Chen X, Kang X, et al. UCP2 ameliorates mitochondrial dysfunction, inflammation, and oxidative stress in lipopolysaccharide-induced acute kidney injury. Int Immunopharmacol. 2019;71:336–49. https://doi.org/10.1016/j.intimp.2019.03.043.

    Article  CAS  PubMed  Google Scholar 

  24. Ren Q, Guo F, Tao S, Huang R, Ma L, Fu P. Flavonoid fisetin alleviates kidney inflammation and apoptosis via inhibiting Src-mediated NF-κB p65 and MAPK signaling pathways in septic AKI mice. Biomed Pharmacother. 2020. https://doi.org/10.1016/j.biopha.2019.109772.

    Article  PubMed  Google Scholar 

  25. Stasi A, Intini A, Divella C, Franzin R, Montemurno E, Grandaliano G, et al. Emerging role of lipopolysaccharide binding protein in sepsis-induced acute kidney injury. Nephrol Dial Transplant. 2017;32(1):24–31. https://doi.org/10.1093/ndt/gfw250.

    Article  CAS  PubMed  Google Scholar 

  26. Sun M, Li J, Mao L, Wu J, Deng Z, He M, et al. p53 Deacetylation alleviates sepsis-induced acute kidney injury by promoting autophagy. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.685523.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Benavente FM, Soto JA, Pizarro-Ortega MS, Bohmwald K, González PA, Bueno SM, et al. Contribution of IDO to human respiratory syncytial virus infection. J Leukoc Biol. 2019;106(4):933–42. https://doi.org/10.1002/jlb.4ru0219-051rr.

    Article  CAS  PubMed  Google Scholar 

  28. Li Q, Li X, Quan H, Wang Y, Qu G, Shen Z, et al. IL-10(-/-) Enhances DCs immunity against chlamydia psittaci infection via OX40L/NLRP3 and IDO/Treg pathways. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.645653.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Munn DH, Mellor AL. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol. 2016;37(3):193–207. https://doi.org/10.1016/j.it.2016.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhai L, Bell A, Ladomersky E, Lauing KL, Bollu L, Sosman JA, et al. Immunosuppressive IDO in cancer: mechanisms of action, animal models, and targeting strategies. Front Immunol. 2020;11:1185. https://doi.org/10.3389/fimmu.2020.01185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cinar I, Sirin B, Aydin P, Toktay E, Cadirci E, Halici I, et al. Ameliorative effect of gossypin against acute lung injury in experimental sepsis model of rats. Life Sci. 2019;221:327–34. https://doi.org/10.1016/j.lfs.2019.02.039.

    Article  CAS  PubMed  Google Scholar 

  32. Xiong S, Hong Z, Huang LS, Tsukasaki Y, Nepal S, Di A, et al. IL-1β suppression of VE-cadherin transcription underlies sepsis-induced inflammatory lung injury. J Clin Invest. 2020;130(7):3684–98. https://doi.org/10.1172/jci136908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sodhi RK, Bansal Y, Singh R, Saroj P, Bhandari R, Kumar B, et al. IDO-1 inhibition protects against neuroinflammation, oxidative stress and mitochondrial dysfunction in 6-OHDA induced murine model of Parkinson’s disease. Neurotoxicology. 2021;84:184–97. https://doi.org/10.1016/j.neuro.2021.03.009.

    Article  CAS  PubMed  Google Scholar 

  34. Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461. https://doi.org/10.3389/fimmu.2014.00461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen J-Q, Szodoray P, Zeher M. Toll-Like receptor pathways in autoimmune diseases. Clin Rev Allergy Immunol. 2016;50(1):1–17. https://doi.org/10.1007/s12016-015-8473-z.

    Article  CAS  PubMed  Google Scholar 

  36. Park BS, Lee JO. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med. 2013;45(12):e66. https://doi.org/10.1038/emm.2013.97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao Z, Ning J, Bao XQ, Shang M, Ma J, Li G, et al. Fecal microbiota transplantation protects rotenone-induced Parkinson’s disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis. Microbiome. 2021;9(1):226. https://doi.org/10.1186/s40168-021-01107-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mahanonda R, Sa-Ard-Iam N, Montreekachon P, Pimkhaokham A, Yongvanichit K, Fukuda MM, et al. IL-8 and IDO expression by human gingival fibroblasts via TLRs. J Immunol. 2007;178(2):1151–7. https://doi.org/10.4049/jimmunol.178.2.1151.

    Article  CAS  PubMed  Google Scholar 

  39. Salazar F, Awuah D, Negm OH, Shakib F, Ghaemmaghami AM. The role of indoleamine 2,3-dioxygenase-aryl hydrocarbon receptor pathway in the TLR4-induced tolerogenic phenotype in human DCs. Sci Rep. 2017;7:43337. https://doi.org/10.1038/srep43337.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hemmati S, Sadeghi MA, Mohammad Jafari R, Yousefi-Manesh H, Dehpour AR. The antidepressant effects of GM-CSF are mediated by the reduction of TLR4/NF-ĸB-induced IDO expression. J Neuroinflammation. 2019;16(1):117. https://doi.org/10.1186/s12974-019-1509-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by 2023 Dongguan Social Development Science and Technology Project (general project) (Grant/Award Number: 20231800904482).

Author information

Authors and Affiliations

Authors

Contributions

JY: conceptualization, methodology, writing—original draft. WW: performed the experiments, writing—original draft. WZ and ZL: analyzed the data.

Corresponding author

Correspondence to Jianhui Yan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10157_2023_2332_MOESM1_ESM.tif

Supplementary file1 IDO protein expression in different groups of kidney tissues. (A) Representative IDO protein immunohistochemical staining images in kidney of different group at 12 hours after LPS exposure. (B) IDO positive cells in kidney of different group were compared at 12 hours after LPS exposure. (C) Representative protein bands of IDO protein in kidney tissues of different group at 12 hours after LPS exposure. 10 mice in each group. *** P<0.001 vs Control group, and ### P<0.001 vs WT group. (TIF 1325 KB)

10157_2023_2332_MOESM2_ESM.tif

Supplementary file2 IDO protein expression in TCMK-1 cells after different treatment. (A) Expression of IDO protein in TCMK-1 cells stimulated with different concentrations of LPS for 8 hours using immunoblotting. (B) Expression of IDO protein in TCMK-1 cells stimulated with 10 mg/L LPS for different hours using immunoblotting. (C) TCMK-1 were stimulated with 10 mg/L LPS for 8 hours, and one replicate was added 1mM of 1-MT at 12 h before LPS onset. Cells were harvested to detect IDO protein expression using immunoblotting. 3 independent repetitions of each test. *** P<0.001 vs Solvent group (0 mg/L LPS or 10 mg/L LPS treat for 0 hours), and ### P<0.001 vs LPS group. (TIF 275 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Zhong, W., Lin, Z. et al. Blockade of Indoleamine 2,3-Dioxygenase attenuates lipopolysaccharide-induced kidney injury by inhibiting TLR4/NF-κB signaling. Clin Exp Nephrol 27, 495–505 (2023). https://doi.org/10.1007/s10157-023-02332-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-023-02332-2

Keywords

Navigation