Skip to main content
Log in

On Primordial Sense–Antisense Coding

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The genetic code is implemented by aminoacyl-tRNA synthetases (aaRS). These 20 enzymes are divided into two classes that, despite performing same functions, have nothing common in structure. The mystery of this striking partition of aaRSs might have been concealed in their sterically complementary modes of tRNA recognition that, as we have found recently, protect the tRNAs with complementary anticodons from confusion in translation. This finding implies that, in the beginning, life increased its coding repertoire by the pairs of complementary codons (rather than one-by-one) and used both complementary strands of genes as templates for translation. The class I and class II aaRSs may represent one of the most important examples of such primordial sense–antisense (SAS) coding (Rodin and Ohno, Orig Life Evol Biosph 25:565–589, 1995). In this report, we address the issue of SAS coding in a wider scope. We suggest a variety of advantages that such coding would have had in exploring a wider sequence space before translation became highly specific. In particular, we confirm that in Achlya klebsiana a single gene might have originally coded for an HSP70 chaperonin (class II aaRS homolog) and an NAD-specific GDH-like enzyme (class I aaRS homolog) via its sense and antisense strands. Thus, in contrast to the conclusions in Williams et al. (Mol Biol Evol 26:445–450, 2009), this could indeed be a “Rosetta stone” gene (Carter and Duax, Mol Cell 10:705–708, 2002) (eroded somewhat, though) for the SAS origin of the two aaRS classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Carter CW Jr (2008) Whence the genetic code?: thawing the ‘frozen accident’. Heredity 100:339–340

    Article  PubMed  Google Scholar 

  • Carter CW Jr, Duax WL (2002) Did tRNA synthetase classes arise on opposite strands of the same gene? Mol Cell 10:705–708

    Article  CAS  PubMed  Google Scholar 

  • Crick FHC (1968) The origin of the genetic code. J Mol Biol 38:367–380

    Article  CAS  PubMed  Google Scholar 

  • Crick FHC, Brenner S, Klug A, Pieczenik G (1976) A speculation on the origin of protein synthesis. Orig Life 7:389–397

    Article  CAS  PubMed  Google Scholar 

  • Culbertson MR (1999) RNA surveillance. Unforeseen consequences for gene expression, inherited genetic disorders and cancer. Trends Genet 15:74–80

    Article  CAS  PubMed  Google Scholar 

  • Delarue M (2007) An asymmetric underlying rule in the assignment of codons: possible clue to a quick early evolution of the genetic code via successive binary choices. RNA 13:1–9

    Google Scholar 

  • Dennett DC (1995) Darwin’s dangerous idea: evolution and the meanings of life. Simon and Schuster, New York

    Google Scholar 

  • Di Giulio M (2008) An extension of the coevolution theory of the origin of the genetic code. Biol Direct 3:37

    Article  PubMed  Google Scholar 

  • Duax WL, Huether R, Pletnev V, Langs D, Addlagatta A, Connare S, Habegger L, Gill J (2005) Rational genomes: antisense open reading frames and codon bias in short chain oxido reductase enzymes and the evolution of the genetic code. Proteins 61:900–906

    Article  CAS  PubMed  Google Scholar 

  • Eigen M, Schuster P (1979) Hypercycle: a principle of natural self-organization. Springer-Verlag, Heidelberg

    Google Scholar 

  • Fitch WM, Upper K (1987) The phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic code. Cold Spring Harb Symp Quant Biol 52:759–767

    CAS  PubMed  Google Scholar 

  • Freeland SJ, Hurst LD (1998) The genetic code is one in a million. J Mol Evol 47:238–248

    Article  CAS  PubMed  Google Scholar 

  • Gupta R (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491

    CAS  PubMed  Google Scholar 

  • Gupta RS, Golding GB (1993) Evolution of HSP70 gene and its implications regarding relationships between Archaebacteria, Eubacteria, and Eukaryotes. J Mol Evol 37:573–582

    Article  CAS  PubMed  Google Scholar 

  • Henkin TM (2009) RNA-dependent RNA switches in bacteria. Methods Mol Biol 540:207–214

    Article  CAS  PubMed  Google Scholar 

  • Hsieh-Li HM, Witte DP, Weinstein M, Branford W, Li H, Small K, Potter SS (1995) Hoxa 11 structure, extensive antisense transcription, and function in male and female fertility. Development 121:1373–1385

    CAS  PubMed  Google Scholar 

  • Ibba M, Morgan S, Curnow AW, Pridmore DR, Vothknecht UC, Gardner W, Lin W, Woese CR, Soll D (1997) Euryarchael lysyl-tRNA synthetase: resemblance to class I synthetases. Science 278:1119–1122

    Article  CAS  PubMed  Google Scholar 

  • Kamtekar S, Schiffer JM, Xiong H, Babik JM, Hecht MH (1993) Protein design by binary patterning of polar and non-polar amino acids. Science 262:1680–1685

    Article  CAS  PubMed  Google Scholar 

  • Knight RD, Freeland SJ, Landweber LF (2001) Rewriting the keyboard: evolvability of the genetic code. Nature Rev Genet 2001(2):49–58

    Article  Google Scholar 

  • Konechny J, Eckert M, Schoniger M, Hofacker GL (1993) Neutral adaptation of the genetic code to double-strand coding. J Mol Evol 36:407–416

    Article  Google Scholar 

  • Kuhns ST, Joyce GF (2003) Perfectly complementary nucleic acid enzymes. J Mol Evol 56:711–717

    Article  CAS  PubMed  Google Scholar 

  • LeJohn HB, Cameron LE, Yang B, Rennie SL (1994) Molecular characterization of an NAD-specific glutamate dehydrogenase gene inducuble by l-glutamine (antisense gene pair arrangement with L-glutamine-inducible heat shock 70-like protein gene). J Biol Chem 269:4523–4531

    CAS  PubMed  Google Scholar 

  • Lemons D, McGinnis W (2006) Genomic evolution of Hox gene clusters. Science 313:1918–1921

    Article  CAS  PubMed  Google Scholar 

  • Maynard Smith J, Szathmary E (1995) The major transitions in evolution. Freeman, Oxford

    Google Scholar 

  • Novozhilov AS, Yu Wolf, Koonin EV (2007) Evolution of the genetic code: partial optimization of a random code for robustness to translation error in a rugged fitness landscape. Biol Direct 2:24

    Article  PubMed  Google Scholar 

  • Ohno S (1987) Evolution from primordial oligomeric repeats to modern coding sequences. J Mol Evol 25:325–329

    Article  CAS  PubMed  Google Scholar 

  • Ohno S (1991) The grammatical rule of DNA language: messages in palindromic verses. In: Osawa S, Honjo T (eds) Evolution of life: fossils, molecules and culture. Springer, Tokyo, pp 97–108

    Google Scholar 

  • Ohno S, Yomo T (1991) The grammatical rule for all DNA: junk and coding sequences. Electrophoresis 12:103–108

    Article  CAS  PubMed  Google Scholar 

  • Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–393

    Article  CAS  PubMed  Google Scholar 

  • Patel SC, Bradley LH, Jinadasa SP, Hecht MH (2009) Cofactor binding and enzymatic activity in an unevolved superfamily of de novo designed 4-helix bundle proteins. Protein Sci 18:1388–1400

    Article  CAS  PubMed  Google Scholar 

  • Pham Y, Li L, Kim A, Erdogan O, Weinreb V, Butterfoss GL, Kuhlman B, Carter CW Jr (2007) A minimal Trp RS catalytic domain supports sense/antisense ancestry of class I and II aminoacyl-tRNA synthetases. Mol Cell 25:851–862

    Article  CAS  PubMed  Google Scholar 

  • Ribas de Pouplana L, Schimmel P (2001a) Two classes of tRNA synthetases suggested by sterically compatible dockings on tRNA acceptor stem. Cell 104:191–193

    Article  CAS  PubMed  Google Scholar 

  • Ribas de Pouplana L, Schimmel P (2001b) Aminoacyl-tRNA synthetases: potential markers of genetic code development. Trends Biochem Sci 26:591–596

    Article  CAS  PubMed  Google Scholar 

  • Rodin S, Ohno S (1995) Two types of aminoacyl-tRNA synthetases could be originally encoded by complementary strands of nucleic acids. Orig Life Evol Biosph 25:565–589

    Article  CAS  PubMed  Google Scholar 

  • Rodin S, Ohno S (1997) Four primordial modes of tRNA-synthetase recognition, determined by the (G, C) operational code. Proc Natl Acad Sci USA 93:4537–4542

    Article  Google Scholar 

  • Rodin SN, Rodin AS (2006a) Origin of the genetic code: first aminoacyl-tRNA syntheatses could replace isofunctional ribozymes when only the second base of codons was established. DNA Cell Biol 25:365–375

    Article  CAS  PubMed  Google Scholar 

  • Rodin SN, Rodin AS (2006b) Partitioning of aminoacyl-tRNA synthetases in two classes could have been encoded in a strand-symmetric RNA world. DNA Cell Biol 25:617–626

    Article  CAS  PubMed  Google Scholar 

  • Rodin SN, Rodin AS (2008) On the origin of the genetic code: signatures of its primordial complementarity in tRNAs and aminoacyl-tRNA synthetases. Heredity 100:341–355

    Article  CAS  PubMed  Google Scholar 

  • Rodin AS, Rodin SN (2009) Frozen complementarity of the genetic code: relics of primordial mirror symmetry in tRNAs and aminoacyl-tRNA synthetases. Cell Mol Life Sci (in preparation)

  • Rodin S, Ohno S, Rodin A (1993a) Transfer RNAs with complementary anticodons: could they reflect early evolution of discriminative genetic code adapters? Proc Natl Acad Sci USA 90:4723–4727

    Article  CAS  PubMed  Google Scholar 

  • Rodin S, Ohno S, Rodin A (1993b) On concerted origin of transfer RNAs with complementary anticodons. Orig Life Evol Biosph 23:393–418

    Article  CAS  PubMed  Google Scholar 

  • Rodin S, Rodin A, Ohno S (1996) The presence of codon-anticodon pairs in the acceptor stem of tRNAs. Proc Natl Acad Sci USA 93:4537–4542

    Article  CAS  PubMed  Google Scholar 

  • Rodin AS, Szathmary E, Rodin SN (2009) One ancestor for two codes viewed from the perspective of two complementary modes of tRNA aminoacylation. Biol Direct 4:4. doi:10.1186/1745-6150-4-4

    Article  PubMed  Google Scholar 

  • Rother KI, Clay OK, Bourquin J-P, Silke J, Schaffner W (1997) Long non-stop reading frames on the antisense strand of heat shock protein 70 genes and prion protein (PrP) genes are conserved between species. Biol Chem 378:1521–1530

    Article  CAS  PubMed  Google Scholar 

  • Schimmel P, Beebe K (2006) Aminoacyl tRNA synthetases: from the RNA world to the theater of proteins. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world. Cold Spring Harbor Laboratory Press, NY, USA, pp 227–255

    Google Scholar 

  • Schimmel P, Giege R, Moras D, Yokoyama S (1993) An operational RNA code for amino acids and possible relation to genetic code. Proc Natl Acad Sci USA 90:8763–8768

    Article  CAS  PubMed  Google Scholar 

  • Silke J (1997) The majority of long non-stop reading frames on the antisense strand can be explained by biased codon usage. Gene 194:143–155

    Article  CAS  PubMed  Google Scholar 

  • Szathmary E (1993) Coding coenzyme handles: a hypothesis for the origin of the genetic code. Proc Natl Acad Sci USA 90:9916–9920

    Article  CAS  PubMed  Google Scholar 

  • Szathmary E (1999) The origin of the genetic code: amino acids as cofactors in an RNA world. Trends Genet 15:223–229

    Article  CAS  PubMed  Google Scholar 

  • Trifonov EN (2005) Theory of early molecular evolution: predictions and confirmations. In: Eisenhaber F (ed) Discovering biomolecular mechanisms with computational biology. Landes Bioscience, Georgetown, pp 107–116

    Google Scholar 

  • Williams TA, Wolfe KH, Fares MA (2009) No Rosetta stone for a sense-antisense origin of aminoacyl tRNA synthetase classes. Mol Biol Evol 26:445–450

    Article  CAS  PubMed  Google Scholar 

  • Yarus M (1998) Amino acids as RNA ligands: a direct-RNA-template theory for the code’s origin. J Mol Evol 47:109–117

    Article  CAS  PubMed  Google Scholar 

  • Yarus M, Caporaso JG, Knight R (2005) Origins of the genetic code: the escaped triplet theory. Annu Rev Biochem 74:125–151

    Article  Google Scholar 

  • Yomo T, Ohno S (1989) Concordant evolution of coding and noncoding regions of DNA made possible by the universal rule of TA/CG deficiency–TG/CT excess. Proc Natl Acad Sci USA 81:2650–2654

    Google Scholar 

  • Yomo T, Urabe I, Okada H (1992) No stop codons in the antisense strands of the genes for nylon oligomer degradation. Proc Natl Acad Sci USA 89:3780–3784

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Freeland S (2006) The standard genetic code enhances adaptive evolution of proteins. J Theor Biol 239:63–70

    Article  CAS  PubMed  Google Scholar 

  • Zull JE, Smith SK (1990) Is genetic code redundancy related to retention of structural information in both DNA strands? Trends Biochem Sci 15:257–261

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei N. Rodin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodin, A.S., Rodin, S.N. & Carter, C.W. On Primordial Sense–Antisense Coding. J Mol Evol 69, 555–567 (2009). https://doi.org/10.1007/s00239-009-9288-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9288-4

Keywords

Navigation