Skip to main content
Log in

Optimization Models and the Structure of the Genetic Code

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The codon assignment of the quasi-universal genetic code can be assumed to have resulted from the evolutionary pressures that prevailed when the code was still evolving. Here, we review studies of the structure of the genetic code based on optimization models. We also review studies that, from the structure of the code, attempt to derive aspects of the primordial circumstances in which the genetic code froze. Different rationales are summarized, compared with experimental data, discussed in the context of the transition from a RNA world to a DNA-protein world, and linked to the emergence of the last universal common ancestor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Bibliography

  • Amirnovin R (1997) An analysis of the metabolic theory of the origin of the genetic code. J Mol Evol 44:473–476

    Article  CAS  PubMed  Google Scholar 

  • Ardell DH (1998) On error minimization in a sequential origin of the standard genetic code. J Mol Evol 47:1–13

    Article  CAS  PubMed  Google Scholar 

  • Ardell DH, Sella G (2002) No accident: genetic code freezes in error-correcting patterns of the standard genetic code. Phil Trans R Soc Lond B 357:1625–1642

    Article  CAS  Google Scholar 

  • Bahrami F, Jestin JL (2008) Streptococcus agalactiae DNA polymerase I is an efficient reverse transcriptase. Biochimie 90:1796–1799

    Article  CAS  PubMed  Google Scholar 

  • Becerra A, Delaye L, Islas S, Lazcano A (2007) The very early stages of biological evolution and the nature of the last common ancestor of the three major cell domains. Ann Rev Ecol Evol Syst 38:361–379

    Article  Google Scholar 

  • Cadwell RC, Joyce GF (1994) Mutagenic PCR. PCR Methods Appl 3:S136–S140

    CAS  PubMed  Google Scholar 

  • Crick FH (1966) Codon-anticodon pairing: the wobble hypothesis. J Mol Biol 19:548–555

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio M (2000) The late stage of genetic code structuring took place at a high temperature. Gene 261:189–195

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio M (2005a) The origin of the genetic code: theories and their relationships, a review. Biosystems 80:175–184

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio M (2005b) Structuring of the genetic code took place at acidic pH. J Theor Biol 237:219–226

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio M (2005c) The ocean abysses witnessed the origin of the genetic code. Gene 346:7–12

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio M, Medugno M (2000) The robust statistical bases of the coevolution theory of genetic code origin. J Mol Evol 50:258–263

    CAS  PubMed  Google Scholar 

  • Freeland SJ, Knight RD, Landweber LF, Hurst LD (2000) Early fixation of an optimal genetic code. Mol Biol Evol 17:511–518

    CAS  PubMed  Google Scholar 

  • Fromant M, Blanquet S, Plateau P (1995) Direct random mutagenesis of gene-sized DNA fragments using polymerase chain reaction. Anal Biochem 224:347–353

    Article  CAS  PubMed  Google Scholar 

  • Galtier N, Lobry JR (1997) Relationships between genomic G + C content, RNA secondary structures and optimal growth temperature in prokaryotes. J Mol Evol 44:632–636

    Article  CAS  PubMed  Google Scholar 

  • Glansdorff N, Xu Y, Labedan B (2008) The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct 3:29

    Article  PubMed  Google Scholar 

  • Goldberg AL, Wittes RE (1966) Genetic code: aspects of organization. Science 153:420–424

    Article  CAS  PubMed  Google Scholar 

  • Gutfraind A, Kempf A (2008) Error-reducing structure of the genetic code indicates code origin in non-thermophile organisms. Orig Life Evol Biosph 38:75–85

    Article  CAS  PubMed  Google Scholar 

  • Hoelzer GA, Smith E, Pepper JW (2006) On the logical relationship between natural selection and self-organization. J Evol Biol 19:1785–1794

    Article  CAS  PubMed  Google Scholar 

  • Islas S, Velasco AM, Becerra A, Delaye L, Lazcano A (2003) Hyperthermophily and the origin and earliest evolution of life. Internat Microbiol 6:87–94

    Article  CAS  Google Scholar 

  • Jestin JL (2006) Degeneracy in the genetic code and its symmetries by base substitutions. Comp Rend Biol 329:168–171

    Article  CAS  Google Scholar 

  • Jestin JL (2009) A rationale for the symmetries by base substitutions of degeneracy in the genetic code. Biosystems (in press)

  • Jestin JL, Kempf A (1997) Chain-termination codons and polymerase-induced frameshift mutations. FEBS Lett 419:153–156

    Article  CAS  PubMed  Google Scholar 

  • Jestin JL, Kempf A (2007) Degeneracy in the genetic code: how and why? Genes. Genomes and Genomics 1:100–103

    Google Scholar 

  • Jestin JL, Soulé C (2007) Symmetries by base substitutions in the genetic code predict 2′ or 3′ aminoacylation of tRNAs. J Theor Biol 247:391–394

    Article  CAS  PubMed  Google Scholar 

  • Jestin JL, Vichier-Guerre S (2005)  How to broaden enzyme substrate specificity: strategies, implications and applications. Res Microbiol 156:961–966

    Article  CAS  PubMed  Google Scholar 

  • Jestin JL, Vichier-Guerre S, Ferris S (2005) Methods for obtaining thermostable enzymes. Patent application WO2005IB00734 20050225

  • Judson OP, Haydon D (1999) The genetic code: what is it good for? An analysis of the effects of selection pressures on genetic codes. J Mol Evol 49:539–550

    Article  CAS  PubMed  Google Scholar 

  • Knight RD, Freeland SJ, Landweber LF (1999) Selection, history and chemistry: the three faces of the genetic code. Trends Biochem Sci 24:241–247

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV, Novozhilov AS (2009) Origin and evolution of the genetic code: the universal enigma. IUBMB Life 61:99–111

    Article  CAS  PubMed  Google Scholar 

  • Lagerkvist U (1978) “Two out of three”: an alternative method for codon reading. Proc Natl Acad Sci USA 75:1759–1762

    Article  CAS  PubMed  Google Scholar 

  • Lehman N, Jukes TH (1988) Genetic code development by stop codon takeover. J Theor Biol 135:203–214

    Article  CAS  PubMed  Google Scholar 

  • Maynard-Smith J, Szathmary E (1995) The major transitions in evolution. Oxford Freeman, pp 81–95

    Google Scholar 

  • Ninio J (1971) Codon-anticodon recognition: the missing triplet hypothesis. J Mol Biol 56:63–74

    Article  CAS  PubMed  Google Scholar 

  • Osawa S, Jukes TH, Watanabe K, Muto A (1992) Recent evidence for evolution of the genetic code. Microbiol Rev 56:229–264

    CAS  PubMed  Google Scholar 

  • Penny D, Hendy MD, Poole AM (2003) Testing fundamental evolutionary hypotheses. J Theor Biol 223:377–385

    Article  PubMed  Google Scholar 

  • Popper K (1972) Objective knowledge; an evolutionary approach. Oxford University Press, New York

    Google Scholar 

  • Ricchetti M, Buc H (1993) E. coli DNA polymerase I as a reverse transcriptase. EMBO J 12:387–396

    CAS  PubMed  Google Scholar 

  • Rodin S, Rodin A (2006) Origin of the genetic code: first aminoacyl-tRNA synthetases could replace isofunctional ribozymes when only the second base of codons was established. DNA Cell Biol 25:365–375

    Article  CAS  PubMed  Google Scholar 

  • Rodin S, Rodin A, Ohno S (1996) The presence of codon-anticodon pairs in the acceptor stem of tRNAs. Proc Natl Acad Sci USA 93:4537–4542

    Article  CAS  PubMed  Google Scholar 

  • Rumer Y (1966) About the codon’s systematization in the genetic code (in Russian). Proc Acad Sci USSR (dokljady) 167:1393–1395

    CAS  Google Scholar 

  • Schimmel P, Giege R, Moras D, Yokoyama S (1993) An operational RNA code for amino acids and possible relationship to genetic code. Proc Natl Acad Sci USA 90:8763–8768

    Article  CAS  PubMed  Google Scholar 

  • Schwartzman DW, Lineweaver CH (2004) The hyperthermophilic origin of life revisited. Biochem Soc Trans 32:168–171

    Article  CAS  PubMed  Google Scholar 

  • Sella G, Ardell DH (2006) The coevolution of genes and genetic codes: Crick’s frozen accident revisited. J Mol Evol 63:297–313

    Article  CAS  PubMed  Google Scholar 

  • Sonneborn TM (1965) Degeneracy of the genetic code: extent, nature and genetic implications. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 377–397

    Google Scholar 

  • Templeton AS, Staudigel H, Tebo BM (2005) Diverse Mn(II)-oxidizing bacteria isolated from submarine basalts at Loihi Seamount. Geomicrobiol J 22:127–139

    Article  CAS  Google Scholar 

  • Thiebe R, Zachau HG, Harbers K (1972) Aminoacylation of fragment combinations from yeast tRNA Phe. Eur J Biochem 26:144–152

    Article  CAS  PubMed  Google Scholar 

  • Vichier-Guerre S, Ferris S, Auberger N, Mahiddine K, Jestin JL (2006) A population of thermostable reverse transcriptases evolved from Thermus aquaticus DNA polymerase I by phage display. Angew Chem Int Ed Engl 45:6133–6137

    Article  CAS  PubMed  Google Scholar 

  • Woese CR (1965) On the evolution of the genetic code. Proc Natl Acad Sci USA 54:1546–1552

    Article  CAS  PubMed  Google Scholar 

  • Wong JT (1975) A co-evolution theory of the genetic code. Proc Natl Acad Sci USA 72:1909–1912

    Article  CAS  PubMed  Google Scholar 

  • Wong JT (1981) Coevolution of genetic code and amino acid biosynthesis. TIBS 6:33–36

    CAS  Google Scholar 

  • Wong JT (2005) Coevolution theory of the genetic code at age thirty. Bioessays 27:416–425

    Article  CAS  PubMed  Google Scholar 

  • Wong JT (2007) Coevolution theory of the genetic code: a proven theory. Orig Life Evol Biosph 37:403–408

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

AK has been supported by the Discovery and Canada Research Chair Programs of the National Science and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Jestin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jestin, J.L., Kempf, A. Optimization Models and the Structure of the Genetic Code. J Mol Evol 69, 452–457 (2009). https://doi.org/10.1007/s00239-009-9287-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9287-5

Keywords

Navigation