Skip to main content
Log in

Hyperthermophily and the origin and earliest evolution of life

  • Review Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

The possibility of a high-temperature origin of life has gained support based on indirect evidence of a hot, early Earth and on the basal position of hyperthermophilic organisms in rRNA-based phylogenies. However, although the availability of more than 80 completely sequenced cellular genomes has led to the identification of hyperthermophilic-specific traits, such as a trend towards smaller genomes, reduced protein-encoding gene sizes, and glutamic-acid-rich simple sequences, none of these characteristics are in themselves an indication of primitiveness. There is no geological evidence for the physical setting in which life arose, but current models suggest that the Earth's surface cooled down rapidly. Moreover, at 100 °C the half-lives of several organic compounds, including ribose, nucleobases, and amino acids, which are generally thought to have been essential for the emergence of the first living systems, are too short to allow for their accumulation in the prebiotic environment. Accordingly, if hyperthermophily is not truly primordial, then heat-loving lifestyles may be relics of a secondary adaptation that evolved after the origin of life, and before or soon after separation of the major lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Achenbach-Richter L, Gupta R, Stetter KO, Woese CR (1987) Were the original eubacteria thermophiles? System Appl Microbiol 9:34–39

  2. Bada JL, Lazcano A (2002) Some like it hot, but not biomolecules. Science 296:1982–1983

    Article  CAS  PubMed  Google Scholar 

  3. Brasier MD, Green OR, Jephcoat AP, Kleppe AK, van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence for Earth's oldest fossils. Nature 416:76–81

    Article  PubMed  Google Scholar 

  4. Brochier C, Philippe H (2002) A non-hyperthermophilic ancestor for Bacteria. Nature 417:244

    Article  CAS  PubMed  Google Scholar 

  5. Brown JR, Douady CJ, Italia MJ, Marshall WE, Stanhope MJ (2001) Universal trees based on large combined protein sequence data sets. Nat Genet 28:281–285

    Article  CAS  PubMed  Google Scholar 

  6. Cody GD, Boctor NZ, Filley TR, Hazen RM, Scott JH, Sharma A, Yoder HS Jr. (2000) Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. Science 289:1337–1340

    Article  CAS  PubMed  Google Scholar 

  7. Corliss JB, Baross JA, Hoffman SE (1981) An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Oceanologica Acta (Suppl.) 4:59–69

  8. Delaye L, Becerra A, Lazcano A (2002) The nature of the last common ancestor. In: Ribas de Pouplana L (ed) The genetic code and the origin of life. Landes Bioscience, Georgetown (in press)

  9. Di Giulio M (2000) The universal ancestor lived in a thermophilic or hyperthermophilic environment. J Theor Biol 203:203–213

    PubMed  Google Scholar 

  10. Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2129

    CAS  PubMed  Google Scholar 

  11. Edgell RD, Doolittle WF (1997) Archaea and the origin(s) of DNA replication proteins. Cell 89:995–998

    CAS  PubMed  Google Scholar 

  12. Ehrenfreund P, Irvine W, Becker L, Blank J, Brucato J, Colangeli L, Derenne S, Despois D, Dutrey A, Fraaije H, Lazcano A, Owen T, Robert F (2002) Astrophysical and astrochemical insights into the origin of life. Reports Prog Phys 65:1427–1487

    Article  CAS  Google Scholar 

  13. Forterre P (2002) A hot story from comparative genomics: reverse gyrase is the only hyperthermophile-specific protein. Trends Genet 18:236–237

    Article  CAS  PubMed  Google Scholar 

  14. Forterre P, Bouthier de la Tour C, Philippe H, Duguet M (2000) Reverse gyrase from hyperthermophiles: probable transfer of a thermoadaptation trait from Archaea to Bacteria. Trends Genet 16:152–154

    Article  CAS  PubMed  Google Scholar 

  15. Franchi M, Bramanti E, Morassi Bonzi LM, Orioli PL, Vettori C, Gallori E (1999) Clay-nucleic acid complexes: characteristics and implications for the preservation of genetic material in primeval habitats. Origins Life Evol Biosph 29:297–315

    Article  CAS  Google Scholar 

  16. Galtier N, Tourasse N, Gouy M (1999) A nonhyperthermophilic common ancestor to extant life forms. Science 283:220–221

    Article  CAS  PubMed  Google Scholar 

  17. Gogarten-Boekels M, Hilario E, Gogarten JP (1994) The effects of heavy meteorite bombardment on the early evolution of life—a new look at the molecular record. Origins Life Evol Biosph 25:78–83

    Google Scholar 

  18. Grogan DW (1998) Hyperthermophiles and the problem of DNA instability. Mol Microbiol 28:1043–1049

    Google Scholar 

  19. Holm NG (ed) (1992) Marine hydrothermal systems and the origin of life. Kluwer Academic , Dordrecht

  20. Huber C, Wächtershäuser G (1998) Peptides by activation of amino acids with CO on (Ni, Fe)S surfaces: implications for the origin of life. Science 281:670–672

    Article  CAS  PubMed  Google Scholar 

  21. Karlin S, Mrázek J (1998) Prokaryotic genome-wide comparisons and evolutionary implications. In: de Bruijn FJ, Lupski JR, Weinstock GM (eds) Bacterial Genomes: physical structure and analysis. Kluwer Academic , Boston, pp 196–212

  22. Lamarck JB (1804) Zoological Philosophy: an exposition with regard to the Natural History of Animals. The University of Chicago Press, Chicago (Translated 1984), 458 pp

    Google Scholar 

  23. Levy M, Miller SL (1998) The stability of the RNA bases: implications for the origin of life. Proc Natl Acad Sci USA 95:7933–7938

    Article  CAS  PubMed  Google Scholar 

  24. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    CAS  PubMed  Google Scholar 

  25. Maden BEH (1995) No soup for starters? Autotrophy and the origins of metabolism. Trends Biochem Sci 20:337–341

    Article  CAS  PubMed  Google Scholar 

  26. Marguet E, Forterre P (1994) DNA stability at temperatures typical for hyperthermophiles. Nucleic Acid Res 22:1681–1686

    CAS  PubMed  Google Scholar 

  27. Miller SL (1953) A production of amino acids under possible primitive Earth conditions. Science 117:528

    CAS  Google Scholar 

  28. Miller SL, Bada JL (1988) Submarine hot springs and the origin of life. Nature 334:609–611

    CAS  PubMed  Google Scholar 

  29. Miller SL, Lazcano A (1995) The origin of life—did it occur at high temperatures? J Mol Evol 41:689–692

  30. Miller SL, Lazcano A (2002) Formation of the building blocks of life. In: Schopf JW (ed) Life's origin: the beginnings of biological evolution. California University Press, Berkeley, pp 78–112

  31. Moxon ER (1999) Whole-genome analysis of pathogens. In: Stearns SC (ed) Evolution in health and disease. Oxford University Press, New York pp 191–204

  32. Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409:1083–1091

    Google Scholar 

  33. Oró J (1960) Synthesis of adenine from ammonium cyanide. Biochem Biophys Res Commun 2:407–412

    Google Scholar 

  34. Pace NR (1991) Origin of life—facing up to the physical setting. Cell 65:531–533

    CAS  PubMed  Google Scholar 

  35. Palmer T (1995) Understanding enzymes. Prentice Hall, Hertfordshire

  36. Robertson MP, Miller SL (1995) An efficient prebiotic synthesis of cytosine and uracil. Nature 375:772–774

    CAS  PubMed  Google Scholar 

  37. Schopf JW (ed) (1983) Earth's earliest biosphere: its origin and evolution. Princeton University Press, Princeton

  38. Schopf JW (1993) Microfossils of the early Archaean Apex chert: new evidence of the antiquity of life. Science 260:640–646

    CAS  PubMed  Google Scholar 

  39. Shapiro R (1995) The prebiotic role of adenine: a critical analysis. Origins Life Evol Biosph 25:83–98

    CAS  Google Scholar 

  40. Shimkets LJ (1998) Structure and sizes of the genomes of the Archaea and Bacteria. In: de Bruijn FJ, Lupski JR, Weinstock GM (eds) Bacterial genomes: physical structure and analysis. Kluwer Academic, Boston, pp 5–11

  41. Sleep NH, Zahnle KJ, Kastings JF, Morowitz HJ (1989) Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342:139–142

    CAS  PubMed  Google Scholar 

  42. Sleep NH, Zahnle K, Neuhoff PS (2001) Initiation of clement surface conditions on the earliest Earth. Proc Natl Acad Sci USA 98:3666–3672

    Article  CAS  PubMed  Google Scholar 

  43. Sowerby SJ, Mörth C-M, Holm NG (2001) Effect of temperature on the adsorption of adenine. Astrobiology 1:481–487

    Article  CAS  PubMed  Google Scholar 

  44. Stetter KO (1994) The lesson of archaebacteria. In: Bengtson S (ed) Early life on earth: Nobel symposium no. 84. Columbia University Press, New York, pp 114–122

  45. Strasak M, Sersen F (1991) An unusual reaction of adenine and adenosine on montmorillonite: a new way of prebiotic synthesis of some purine nucleotides? Naturwissenschaften 78:121–122

  46. Tehei M, Franzetti B, Maurel M-C, Vergne J, Hountondji C, Zaccai G (2002) The search for traces of life: the protective effect of salt on biological macromolecules. Extremophiles 6:427–430

    Article  CAS  PubMed  Google Scholar 

  47. Tekaia F, Lazcano A, Dujon B (1999) The genomic tree as revealed from whole proteome comparisons. Genome Res 9:550–557

    CAS  PubMed  Google Scholar 

  48. Tekaia F, Yeramian E, Dujon B (2002) Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis. Gene 297:51–60

    Article  CAS  PubMed  Google Scholar 

  49. Van Kranendonk MJ (2002) The flourishing of early life on Earth at hydrothermal vents: geological evidence from the 3.49–3.43 Ga Warrawoona Group, Pilbara Craton, Western Australia. Abstracts of the IAU Symposium 213 Bioastronomy 2002: Life among the stars. Australian Centre for Astrobiology, Hamilton Island, Great Barrier Reef, Australia, July 8–12, 2002, p 33

    Google Scholar 

  50. Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484

    CAS  PubMed  Google Scholar 

  51. White RH (1984) Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250 °C. Nature 310:430–432

    Google Scholar 

  52. Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  CAS  PubMed  Google Scholar 

  53. Woese CR (2002) On the evolution of cells. Proc Natl Acad Sci USA 99:8742–8747

    Article  CAS  PubMed  Google Scholar 

  54. Wootton J, Federhen S (1993) Statistics of local complexity in amino acid sequence and sequence database. Compt Chem 17:149–163

    Article  CAS  Google Scholar 

  55. Zhang J (2000) Protein-length distributions for the three domains of life. Trends Genet 16:107–109

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

AL is an affiliate of the NSCORT-University of California, San Diego. This paper was completed during a sabbatical leave of absence in which one of us (AL) enjoyed the hospitality of Stanley L. Miller and his associates at the University of California, San Diego. Support from the National Aeronautics and Space Administration Specialized Center of Research and Training in Exobiology (NSCORT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Lazcano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islas, S., Velasco, A.M., Becerra, A. et al. Hyperthermophily and the origin and earliest evolution of life. Int Microbiol 6, 87–94 (2003). https://doi.org/10.1007/s10123-003-0113-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-003-0113-4

Keywords

Navigation