Skip to main content
Log in

The Mitochondrial Genome of a Deep-Sea Bamboo Coral (Cnidaria, Anthozoa, Octocorallia, Isididae): Genome Structure and Putative Origins of Replication Are Not Conserved Among Octocorals

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Octocoral mitochondrial (mt) DNA is subject to an exceptionally low rate of substitution, and it has been suggested that mt genome content and structure are conserved across the subclass, an observation that has been supported for most octocorallian families by phylogenetic analyses using PCR products spanning gene boundaries. However, failure to recover amplification products spanning the nad4Lmsh1 gene junction in species from the family Isididae (bamboo corals) prompted us to sequence the complete mt genome of a deep-sea bamboo coral (undescribed species). Compared to the “typical” octocoral mt genome, which has 12 genes transcribed on one strand and 5 genes on the opposite (cox2, atp8, atp6, cox3, trnM), in the bamboo coral genome a contiguous string of 5 genes (msh1, rnl, nad2, nad5, nad4) has undergone an inversion, likely in a single event. Analyses of strand-specific compositional asymmetry suggest that (i) the light-strand origin of replication was also inverted and is adjacent to nad4, and (ii) the orientation of the heavy-strand origin of replication (OriH) has reversed relative to that of previously known octocoral mt genomes. Comparative analyses suggest that intramitochondrial recombination and errors in replication at OriH may be responsible for changes in gene order in octocorals and hexacorals, respectively. Using primers flanking the regions at either end of the inverted set of five genes, we examined closely related taxa and determined that the novel gene order is restricted to the deep-sea subfamily Keratoisidinae; however, we found no evidence for strand-specific mutational biases that may influence phylogenetic analyses that include this subfamily of bamboo corals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelnoor RV, Christensen AC, Mohammed S, Munoz-Castillo B, Moriyama H, Mackenzie SA (2006) Mitochondrial genome dynamics in plants and animals: convergent gene fusions of a MutS homologue. J Mol Evol 63:165–173

    Article  PubMed  CAS  Google Scholar 

  • Alderslade P (1998) Revisionary systematics in the gorgonian family Isididae, with descriptions of numerous new taxa (Coelenterata: Octocorallia). Rec Aust Mus S55:335–339

    Google Scholar 

  • Altschul SF, Madden TL, Scäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Beagley CT, Macfarlane JL, Pont-Kingdon GA, Okimoto R, Okada NA, Wolstenholme DR (1995) Mitochondrial genomes of Anthozoa (Cnidaria). In: Palmieri F, Papa S, Saccone C, Gadaleta MN (eds) Thirty years of progress in mitochondrial bioenergetics and molecular biology. Elsevier Science, New York, pp 149–153

    Google Scholar 

  • Beagley CT, Okada NA, Wolstenholme DR (1996) Two mitochondrial group I introns in a metazoan, the sea anemone, Metridium senile: one intron contains genes for subunits 1 and 3 of NADH dehydrogenase. Proc Natl Acad Sci USA 93:5619–5623

    Article  PubMed  CAS  Google Scholar 

  • Beaton MJ, Roger AJ, Cavalier-Smith T (1998) Sequence analysis of the mitochondrial genome of Sarcophyton glaucum: conserved gene order among octocorals. J Mol Evol 47:697–708

    Article  PubMed  CAS  Google Scholar 

  • Bedinger P, Munn M, Alberts BM (1989) Sequence-specific pausing during in vitro DNA replication on double-stranded DNA templates. J Biol Chem 264:16880–16886

    PubMed  CAS  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  PubMed  CAS  Google Scholar 

  • Berntson EA, Bayer FM, Mcarthur AG, France SC (2001) Phylogenetic relationships within the Octocorallia (Cnidaria: Anthozoa) based on nuclear 18S rRNA sequences. Mar Biol 138:235–246

    Article  CAS  Google Scholar 

  • Berntson EA, France SC (2001) Generating DNA sequence information from museum collections of octocoral specimens (Phylum Cnidaria: Class Anthozoa). Bull Biol Soc Wash 10:119–129

    Google Scholar 

  • Boore JL, Brown WM (1998) Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr Opin Genet Dev 8:668–674

    Article  PubMed  CAS  Google Scholar 

  • Brugler MR, France SC (2007) The complete mitochondrial genome of the black coral Chrysopathes formosa (Cnidaria: Anthozoa: Antipatharia) supports classification of antipatharians within the subclass Hexacorallia. Mol Phylogenet Evol 42:776–788

    Article  PubMed  CAS  Google Scholar 

  • Cairns SD, Bayer FM (2005) A review of the genus Primnoa (Octocorallia: Gorgonacea: Primnoidae), with the description of two new species. Bull Mar Sci 77:225–256

    Google Scholar 

  • Charif D, Lobry J (2007) SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In: Bastolla HRU, Porto M, Vendruscolo M (eds) Structural approaches to sequence evolution: molecules, networks, populations. Springer Verlag, New York, pp 207–232

    Chapter  Google Scholar 

  • Chen C, Dai C-F, Plathong S, Chiou C-Y, Chen CA (2008) The complete mitochondrial genomes of needle corals, Seriatopora spp. (Scleractinia: Pocilloporidae): an idiosyncratic atp8, duplicated trnW gene, and hypervariable regions used to determine species phylogenies and recently diverged populations. Mol Phylogenet Evol 46:19–33

    Article  PubMed  CAS  Google Scholar 

  • Clary DO, Wolstenholme DR (1984) The Drosophila mitochondrial genome. Oxford Surv Eukary Genes 1:1–35

    CAS  Google Scholar 

  • Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28:693–705

    Article  PubMed  CAS  Google Scholar 

  • Clayton DA (1991) Replication and transcription of vertebrate mitochondrial DNA. Rev Cell Biol 7:453–478

    CAS  Google Scholar 

  • Clayton DA (2003) Mitochondrial DNA replication: what we know. Life 55:213–217

    PubMed  CAS  Google Scholar 

  • Crozier RH, Crozier YC (1993) The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics 133:97–117

    PubMed  CAS  Google Scholar 

  • Dowton M, Austin AD (1999) Evolutionary dynamics of a mitochondrial rearrangement “hot spot” in the Hymenoptera. Mol Biol Evol 16:298–309

    PubMed  CAS  Google Scholar 

  • Dowton M, Campbell NJH (2001) Intramitochondrial recombination—Is it why some mitochondrial genes sleep around? Trends Ecol Evol 16:269–271

    Article  PubMed  Google Scholar 

  • Fabricius K, Alderslade P (2001) Soft corals and sea fans. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Flot JF, Tillier S (2007) The mitochondrial genome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: the putative D-loop and a novel ORF of unknown function. Gene 401:80–87

    Article  PubMed  CAS  Google Scholar 

  • Folmer O, Black MB, Hoeh W, Lutz RA, Vrijenhoek RC (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • France SC (2007) Genetic analysis of bamboo corals (Cnidaria: Octocorallia: Isididae): does lack of colony branching distinguish Lepidisis from Keratoisis? Bull Mar Sci 81:323–333

    Google Scholar 

  • France SC, Hoover LL (2001) Analysis of variation in mitochondrial DNA sequences (ND3, ND4L, MSH) among Octocorallia (=Alcyonaria) (Cnidaria: Anthozoa). Bull Biol Soc Wash 10:110–118

    Google Scholar 

  • France SC, Hoover LL (2002) DNA sequences of the mitochondrial COI gene have low levels of divergence among deep-sea octocorals (Cnidaria: Anthozoa). Hydrobiologia 471:149–155

    Article  Google Scholar 

  • France SC, Rosel PE, Agenbroad JE, Mullineaux LS, Kocher TD (1996) DNA sequence variation of mitochondrial large-subunit rRNA provides support for a two-subclass organization of the Anthozoa (Cnidaria). Mol Mar Biol Biotech 5:15–28

    CAS  Google Scholar 

  • Fukami H, Knowlton N (2005) Analysis of complete mitochondrial DNA sequences of three members of the Montastraea annularis coral species complex (Cnidaria, Anthozoa, Scleractinia). Coral Reefs 24:410–417

    Article  Google Scholar 

  • Fukami H, Omori M, Hatta M (2000) Phylogenetic relationships in the coral family Acroporidae, reassessed by inference from mitochondrial genes. Zool Sci 17:689–696

    PubMed  CAS  Google Scholar 

  • Fukami H, Chen C, Chiou C-Y, Knowlton N (2007) Novel group I introns encoding a putative homing endonuclease in the mitochondrial cox1 gene of scleractinian corals. J Mol Evol 64:591–600

    Article  PubMed  CAS  Google Scholar 

  • Gilbert DG (1992) SeqApp: a biosequence editor and analysis application. Available at: ftp://ftp.bio.indiana.edu/molbio/seqapp

  • Goddard JM, Wolstenholme DR (1980) Origin and direction of replication in mitochondrial DNA molecules from the genus Drosophila. Nucleic Acids Res 8:741–757

    PubMed  CAS  Google Scholar 

  • Goddard MR, Leigh J, Roger AJ, Pemberton AJ (2006) Invasion and persistence of a selfish gene in the Cnidaria. PLoS ONE 1:e3

    Article  PubMed  CAS  Google Scholar 

  • Hassanin A, Léger N, Deutsch J (2005) Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences. Syst Biol 54:277–298

    Article  PubMed  Google Scholar 

  • Hellberg ME (2006) No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol Biol 6:24

    Article  PubMed  CAS  Google Scholar 

  • Kajander OA, Rovio AT, Majamaa K, Poulton J, Spelbrink JN, Holt IJ, Karhunen PJ, Jacobs HT (2000) Human mtDNA sublimons resemble rearranged mitochondrial genomes found in pathological states. Hum Mol Genet 9:2821–2835

    Article  PubMed  CAS  Google Scholar 

  • Kayal E, Lavrov DV (2008) The mitochondrial genome of Hydra oligactis (Cnidaria, Hydrozoa) sheds new light on animal mtDNA evolution and cnidarian phylogeny. Gene 410:177–186

    Google Scholar 

  • Kumazawa Y, Nishida M (1995) Variation in mitochondrial tRNA gene organization of reptiles as phylogenetic markers. Mol Biol Evol 12:759–772

    PubMed  CAS  Google Scholar 

  • Lavrov DV (2007) Key transitions in animal evolution: a mitochondrial DNA perspective. Integr Comp Biol 47:734–743

    Article  CAS  Google Scholar 

  • Lobry J (1996) A simple vectorial representation of DNA sequences for the detection of replication origins in bacteria. Biochemie 78:323–326

    Article  CAS  Google Scholar 

  • Lunt DH, Hyman BC (1997) Animal mitochondrial DNA recombination. Nature 387:247

    Article  PubMed  CAS  Google Scholar 

  • Macey JR, Larson A, Ananjeva NB, Fang Z, Papenfuss TJ (1997) Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Mol Biol Evol 14:91–104

    PubMed  CAS  Google Scholar 

  • Maizels N, Weinder AM (1995) Phylogeny from function: the origin of tRNA is in replication, not translation. In: Fitch WM, Ayala FJ (eds) Tempo and mode in evolution. National Academy Press, Washington, DC, pp 25–40

    Google Scholar 

  • Malik HS, Henikoff S (2000) Dual recognition-incision enzymes might be involved in mismatch repair and meiosis. Trends Biochem Sci 25:414–418

    Article  PubMed  CAS  Google Scholar 

  • McFadden CS, Tullis ID, Hutchinson MB, Winner K, Sohm JA (2004) Variation in coding (NADH dehydrogenase subunits 2, 3, and 6) and noncoding intergenic spacer regions of the mitochondrial genome in Octocorallia (Cnidaria: Anthozoa). Mar Biotechnol (NY) 6:516–526

    Article  CAS  Google Scholar 

  • McFadden CS, France SC, Sanchez JA, Alderslade P (2006) A molecular phylogenetic analysis of the Octocorallia (Cnidaria: Anthozoa) based on mitochondrial protein-coding sequences. Mol Phylogenet Evol 41:513–527

    Article  PubMed  CAS  Google Scholar 

  • Medina M, Collins AG, Takaoka TL, Kuehl JV, Boore JL (2006) Naked corals: skeleton loss in scleractinia. Proc Natl Acad Sci USA 103:9096–9100

    Article  PubMed  CAS  Google Scholar 

  • Miller AD, Nguyen TTT, Burridge CP, Austin CM (2004) Complete mitochondrial DNA sequence of the Australian freshwater crayfish, Cherax destructor (Crustacea: Decapoda: Parastacidae): a novel gene order revealed. Gene 331:65–72

    Article  PubMed  CAS  Google Scholar 

  • Moriz C, Brown WM (1987) Tandem duplications in animal mitochondrial DNAs: variation in incidence and gene content among lizards. Proc Natl Acad Sci USA 84:7183–7187

    Article  Google Scholar 

  • Moritz C, Dowling TE, Brown WM (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annu Rev Ecol Syst 18:269–292

    Article  Google Scholar 

  • Mrazek J, Karlin S (1998) Strand compositional asymmetry in bacterial and large viral genomes. Proc Natl Acad Sci USA 95:3720–3725

    Article  PubMed  CAS  Google Scholar 

  • Mueller RL, Boore JL (2005) Molecular mechanisms of extensive mitochondrial gene rearrangement in plethodontid salamanders. Mol Biol Evol 22:2104–2112

    Article  PubMed  CAS  Google Scholar 

  • Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474

    Article  PubMed  CAS  Google Scholar 

  • Pearson CE, Zorbas H, Price GB, Zannis-Hadjopoulos M (1996) Inverted repeats, stem-loops, and cruciforms: significance for initiation of DNA replication. J Cell Biochem 63:1–22

    Article  PubMed  CAS  Google Scholar 

  • Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41:353–358

    Article  PubMed  CAS  Google Scholar 

  • Picardeau M, Lobry JR, Hinnebusch BJ (2000) Analyzing DNA strand compositional asymmetry to identify candidate replication origins of Borrelia burgdorferi linear and circular plasmids. Genome Res 10:1594–1604

    Article  PubMed  CAS  Google Scholar 

  • Pont-Kingdon G, Okada NA, Macfarlane JL, Beagley CT, Watkins-Sims CD, Cavalier-Smith T, Clark-Walker GD, Wolstenholme DR (1998) Mitochondrial DNA of the coral Sarcophyton glaucum contains a gene for a homologue of bacterial MutS: a possible case of gene transfer from the nucleus to the mitochondrion. J Mol Evol 46:419–431

    Article  PubMed  CAS  Google Scholar 

  • Reyes A, Gissi C, Pesole G, Saccone C (1998) Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol 15:957–966

    PubMed  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  • Saito S, Tamura K, Aotsua T (2005) Replication origin of mitochondrial DNA in insects. Genetics 171:1695–1705

    Article  PubMed  CAS  Google Scholar 

  • Sánchez JA, McFadden CS, France SC, Lasker HR (2003) Molecular phylogenetic analyses of shallow-water Caribbean octocorals. Mar Biol 142:975–987

    Google Scholar 

  • San Mauro D, Gower DJ, Zardoya R, Wilkinson M (2006) A hotspot of gene order rearrangment by tandem duplication and random loss in the vertebrate mitochondrial genome. Mol Biol Evol 23:227–234

    Article  PubMed  CAS  Google Scholar 

  • Shao R, Campbell NJH, Barker SC (2001) Numerous gene rearrangements in the mitochondrial genome of the wallaby louse, Heterodoxus macropus (Phthiraptera). Mol Biol Evol 18:858–865

    PubMed  CAS  Google Scholar 

  • Shearer TL, van Oppen MJH, Romano SL, Wörheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11:2475–2487

    Article  PubMed  CAS  Google Scholar 

  • Sinniger F, Chevaldonné P, Pawlowski J (2007) Mitochondrial genome of Savalia savaglia (Cnidaria, Hexacorallia) and early Metazoan phylogeny. J Mol Evol 64:196–203

    Article  PubMed  CAS  Google Scholar 

  • Smith MJ, Banfield DK, Doteval K, Gorski S, Kowbel DJ (1989) Gene arrangement in sea star mitochondrial DNA demonstrates a major inversion event during echinoderm evolution. Gene 76:181–185

    Article  PubMed  CAS  Google Scholar 

  • Smith MJ, Arndt A, Gorski S, Fajber E (1993) The phylogeny of echinoderm classes based on mitochondrial gene arrangements. J Mol Evol 36:545–554

    Article  PubMed  CAS  Google Scholar 

  • Stanton DJ, Daehler LL, Moritz CC, Brown WM (1994) Sequences with the potential to form stem-and-loop structures are associated with coding-region duplications in animal mitochondrial DNA. Genetics 137:233–241

    PubMed  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Thomas JM, Horspool D, Brown G, Tcherepanov V, Upton C (2007) GraphDNA: a Java program for graphical display of DNA composition analyses. BMC Bioinform 8:21

    Article  CAS  Google Scholar 

  • Tillier ERM, Collins RA (2000) The contributions of replication orientation, gene direction, and signal sequences to base-composition asymmetries in bacterial genomes. J Mol Evol 50:249–257

    PubMed  CAS  Google Scholar 

  • Touchon M, Nicolay S, Audit B, Brodie of Brodie E-B, d’Aubenton-Carafa Y, Arneodo A, Thermes C (2005) Replication-associated strand asymmetries in mammalian genomes: toward detection of replication origins. Proc Natl Acad Sci USA 102:9836–9841

    Article  PubMed  CAS  Google Scholar 

  • van Oppen MJH, Catmull J, McDonald BJ, Hislop NR, Hagerman PJ, Miller DJ (2002) The mitochondrial genome of Acropora tenuis (Cnidaria; Scleractinia) contains a large group I intron and a candidate control region. J Mol Evol 55:1–13

    Article  PubMed  CAS  Google Scholar 

  • Venables WN, Smith DM, R Development Core Team (2005) An introduction to R, version 2.2.0. R-Project, 2005. Available at: http://www.CRAN.R-project.org

  • Viguera E, Canceill D, Ehrlich SD (2001) Replication slippage involves DNA polymerase pausing and dissociation. EMBO J 20:2587–2595

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Nishida M, Watanabe K, Wewengkang DS, Hidaka M (2005) Polymorphism in nucleotide sequence of mitochondrial intergenic region in scleractinian coral (Galaxea fascicularis). Mar Biotechnol (NY) 7:33–39

    Article  CAS  Google Scholar 

  • Wirshing HH, Messing CG, Douady CJ, Reed J, Stanhope MJ, Shivji MS (2005) Molecular evidence for multiple lineages in the gorgonian family Plexauridae (Anthozoa: Octocorallia). Mar Biol 147:497–508

    Article  CAS  Google Scholar 

  • Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216

    Article  PubMed  CAS  Google Scholar 

  • Zucker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Megan Barkes, Wally Renne, Steve Allen, Allison Manning, and Joris L. van der Ham for their assistance in the lab; Eric Pante for help with R; the crews of the R/V Ronald H. Brown and IFE ROVs, Argus and Hercules, and our colleagues on the NOAA-OE Deep Atlantic Stepping Stones 2005 cruise for their assistance at sea; and Cathy McFadden and Phil Alderslade for additional samples. We also gratefully acknowledge Les Watling for his ongoing morphology-based identification of the bamboo corals. The manuscript was greatly improved by comments from Joe Neigel, E. Pante, Patricia Rosel, Jana Thoma, J.L. van der Ham, and three anonymous reviewers. M.R.B. was supported by a State of Louisiana Board of Regents doctoral fellowship (LEQSF[2004-09]-GF-21). Partial support for this research was provided by funding from NOAA’s Office of Ocean Exploration (NA05OAR4601061), NOAA/NMFS Auke Bay Laboratory (NFFS7400-5-00022), and NSF’s Ocean Sciences Division–Biological Oceanography Program (OCE-0624601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott C. France.

Additional information

Mercer R. Brugler and Scott C. France have contributed equally to this work and their names are listed alphabetically.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 746 kb)

(PDF 49 kb)

(PDF 62 kb)

(PDF 225 kb)

(EPS 1432 kb)

(DOC 81 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brugler, M.R., France, S.C. The Mitochondrial Genome of a Deep-Sea Bamboo Coral (Cnidaria, Anthozoa, Octocorallia, Isididae): Genome Structure and Putative Origins of Replication Are Not Conserved Among Octocorals. J Mol Evol 67, 125–136 (2008). https://doi.org/10.1007/s00239-008-9116-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9116-2

Keywords

Navigation