Skip to main content
Log in

Effect of Divergence Time and Recombination Rate on Molecular Evolution of Drosophila INE-1 Transposable Elements and Other Candidates for Neutrally Evolving Sites

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Interspecies divergence of orthologous transposable element remnants is often assumed to be simply due to genetic drift of neutral mutations that occurred after the divergence of the species. However, divergence may also be affected by other factors, such as variation in the mutation rate, ancestral polymorphisms, or selection. Here we attempt to determine the impact of these forces on divergence of three classes of sites that are often assumed to be selectively unconstrained (INE-1 TE remnants, sites within short introns, and fourfold degenerate sites) in two different pairwise comparisons of Drosophila (D. melanogaster vs. D. simulans and D. simulans vs. D. sechellia). We find that divergence of these three classes of sites is strongly influenced by the recombination environment in which they are located, and this is especially true for the closer D. simulans vs. D. sechellia comparison. We suggest that this is mainly a result of the contribution of ancestral polymorphisms in different recombination regions. We also find that intergenic INE-1 elements are significantly more diverged than intronic INE-1 in both pairwise comparisons, implying the presence of either negative selection or lower mutation rates in introns. Furthermore, we show that substitution rates in INE-1 elements are not associated with the length of the noncoding sequence in which they are located, suggesting that reduced divergence in long noncoding sequences is not due to reduced mutation rates in these regions. Finally, we show that GC content for each site within INE-1 sequences has evolved toward an equilibrium value (∼33%) since insertion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akashi H (1995) Inferring weak selection from patterns of polymorphism and divergence at “silent” sites in Drosophila DNA. Genetics 139:1067–1076

    PubMed  CAS  Google Scholar 

  • Aquado CF, Begun DJ, Kindahl EC (1994) Selection, recombination, and DNA polymorphism in Drosophila. In: Golding B (ed) Non-neutral evolution: theories and molecular data. Chapman and Hall, London, pp 46–56

    Google Scholar 

  • Begun DJ, Aquadro CF (1992) Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature 356:519–520

    Article  PubMed  CAS  Google Scholar 

  • Berg DE, Howe MM (1989) Mobile DNA. ASM Press, Herndon, VA

    Google Scholar 

  • Betancourt AJ, Presgraves DC (2002) Linkage limits the power of natural selection in Drosophila. Proc Natl Acad Sci USA 99:13616–13620

    Article  PubMed  CAS  Google Scholar 

  • Bray N, Pachter L (2004) MAVID: constrained ancestral alignment of multiple sequences. Genome Res 14:693–699

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B (1996) Background selection and patterns of genetic diversity in Drosophila melanogaster. Genet Res 68:131–149

    PubMed  CAS  Google Scholar 

  • Charlesworth B, Langley CH (1989) The population genetics of Drosophila transposable elements. Annu Rev Genet 23:251–287

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Lapid A (1989) A study of ten transposable elements on X chromosomes from a population of Drosophila melanogaster. Genet Res 54:113–125

    PubMed  CAS  Google Scholar 

  • Charlesworth B, Lapid A, Canada D (1992) The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. I. Element frequencies and distribution. Genet Res 60:103–114

    PubMed  CAS  Google Scholar 

  • Deaconescu AM, Chambers AL, Smith AJ, et al. (2006) Structural basis for bacterial transcription-coupled DNA repair. Cell 124:507–520

    Article  PubMed  CAS  Google Scholar 

  • Deininger PL, Batzer MA (2002) Mammalian retroelements. Genome Res 12:1455–1465

    Article  PubMed  CAS  Google Scholar 

  • Deininger PL, Moran JV, Batzer MA, Kazazian HH Jr (2003) Mobile elements and mammalian genome evolution. Curr Opin Genet Dev 13:651–658

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1974) The evolutionary advantage of recombination. Genetics 78:737–756

    PubMed  CAS  Google Scholar 

  • Gaffney DJ, Keightley PD (2006) Genomic selective constraints in murid noncoding DNA. PLoS Genet 2:e204

    Article  PubMed  CAS  Google Scholar 

  • Haddrill PR, Charlesworth B, Halligan DL, Andolfatto P (2005) Patterns of intron sequence evolution in Drosophila are dependent upon length and GC content. Genome Biol 6:R67

    Article  PubMed  CAS  Google Scholar 

  • Haddrill PR, Halligan DL, Tomaras D, Charlseworth B (2007) Reduced efficacy of selection in regions of the Drosophila genome that lack crossing over. Genome Biol 8:R18

    Article  PubMed  CAS  Google Scholar 

  • Halligan DL, Keightley PD (2006) Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. Genome Res 16:875–884

    Article  PubMed  CAS  Google Scholar 

  • Hardison RC, Roskin KM, Yang S, et al. (2003) Covariation in frequencies of substitution, deletion, transposition, and recombination during eutherian evolution. Genome Res 13:13–26

    Article  PubMed  CAS  Google Scholar 

  • Hellmann I, Ebersberger I, Ptak SE, Pääbo S, Przeworski M (2003) A neutral explanation for the correlation of diversity with recombination rates in humans. Am J Hum Genet 72:1527–1535

    Article  PubMed  CAS  Google Scholar 

  • Hey J, Kliman RM (2002) Interactions between natural selection, recombination and gene density in the genes of Drosophila. Genetics 160:595–608

    PubMed  CAS  Google Scholar 

  • Hill WG, Robertson A (1966) The effect of linkage on limits to artificial selection. Genet Res 8:269–294

    PubMed  CAS  Google Scholar 

  • Jakubczak JL, Xiong Y, Eickbush TH (1990) Type I (R1) and type II (R2) ribosomal DNA insertions of Drosophila melanogaster are retrotransposable elements closely related to those of Bombyx mori. J Mol Biol 212:37–52

    Article  PubMed  CAS  Google Scholar 

  • Jensen MA, Charlesworth B, Kreitman M (2002) Patterns of genetic variation at a chromosome 4 locus of Drosophila melanogaster and D. simulans. Genetics 160:493–507

    PubMed  CAS  Google Scholar 

  • Jordan IK, Rogozin IB, Glazko GV, Koonin EV (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19:68–72

    Article  PubMed  CAS  Google Scholar 

  • Kapitonov VV, Jurka J (1999) DNAREP1_DM. Repbase update release 3.4. Available at: http://www.girinst.org/Repbase_Updata.html

  • Kapitonov VV, Jurka J (2003) Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc Natl Acad Sci USA 100:6569–6574

    Article  PubMed  CAS  Google Scholar 

  • Kaplan NL, Hudson RR, Langley CH (1989) The “hitch-hiking effect” revisited. Genetics 123(4):887–899

    PubMed  CAS  Google Scholar 

  • Kazazian HH (2004) Mobile elements: drivers of genome evolution. Science 303(5664):1626–1632

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kirby DA, Muse SV, Stephan W (1995) Maintenance of pre-mRNA secondary structure by epistatic selection. Proc Natl Acad Sci USA 92:9047–9051

    Article  PubMed  CAS  Google Scholar 

  • Kliman RM, Hey J (1993) Reduced natural selection associated with low recombination in Drosophila melanogaster. Mol Biol Evol 10:1239–1258

    PubMed  CAS  Google Scholar 

  • LePage DF, Church DM, Millie E, Hassold TJ, Conlon RA (2000) Rapid generation of nested chromosomal deletions on mouse chromosome 2. Proc Natl Acad Sci USA 97:10471–10476

    Article  PubMed  CAS  Google Scholar 

  • Lercher MJ, Hurst LD (2002) Human SNP variability and mutation rate are higher in regions of high recombination. Trends Genet 18:337–340

    Article  PubMed  CAS  Google Scholar 

  • Marais G, Domazet-Loso T, Tautz D, Charlesworth B (2004) Correlated evolution of synonymous and nonsynonymous sites in Drosophila. J Mol Evol 59:771–779

    Article  PubMed  CAS  Google Scholar 

  • Maynard-Smith J, Haigh J (1974) The hitch-hiking effect of a favorable gene. Genet Res 23:23–35

    Article  Google Scholar 

  • McDonald JF (1993) Evolution and consequences of transposable elements. Curr Opin Genet Dev 3:855–864

    Article  PubMed  CAS  Google Scholar 

  • McVean GA, Vieira J (2001) Inferring parameters of mutation, selection and demography from patterns of synonymous site evolution in Drosophila. Genetics 157:245–257

    PubMed  CAS  Google Scholar 

  • Moriyama EN, Powell JR (1996) Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol 13:261–277

    PubMed  CAS  Google Scholar 

  • Moriyama EN, Powell JR (1997) Synonymous substitution rates in Drosophila: mitochondrial versus nuclear genes. J Mol Evol 45:378–391

    Article  PubMed  CAS  Google Scholar 

  • Mozer BA, Benzer S (1994) Ingrowth by photoreceptor axons induces transcription of a retrotransposon in the developing Drosophila brain. Development 120:1049–1058

    PubMed  CAS  Google Scholar 

  • Pardue ML, DeBaryshe PG (2003) Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu Rev Genet 37:485–511

    Article  PubMed  CAS  Google Scholar 

  • Petrov DA, Hartl DL (1999) Patterns of nucleotide substitution in Drosophila and mammalian genomes. Proc Natl Acad Sci USA 96:1475–1479

    Article  PubMed  CAS  Google Scholar 

  • Presgraves DC (2005) Recombination enhances protein adaptation in Drosophila melanogaster. Curr Biol 15:1651–1656

    Article  PubMed  CAS  Google Scholar 

  • Pyatkov KI, Shostak NG, Zelentsova ES, et al. (2002) Penelope retroelements from Drosophila virilis are active after transformation of Drosophila melanogaster. Proc Natl Acad Sci USA 99:16150–16155

    Article  PubMed  CAS  Google Scholar 

  • Quesneville H, Bergman CM, Andrieu O, et al. (2005) Combined evidence annotation of transposable elements in genome sequences. PLoS Comput Biol 1:166–175

    Article  PubMed  CAS  Google Scholar 

  • Shapiro JA, Huang W, Zhang C, Hubisz MJ, Lu J, Turissini DA, Fang S, Wang HY, Hudson RR, Nielsen R, Chen Z, Wu CI (2007) Adaptive genic evolution in the Drosophila genomes, Proc Natl Acad Sci USA 104(7):2271–2276

    Article  PubMed  Google Scholar 

  • Singh ND, Petrov DA (2004) Rapid sequence turnover at an intergenic locus in Drosophila. Mol Biol Evol 21:670–680

    Article  PubMed  CAS  Google Scholar 

  • Singh ND, Arndt PF, Petrov DA (2005a) Genomic heterogeneity of background substitutional patterns in Drosophila melanogaster. Genetics 169:709–722

    Google Scholar 

  • Singh ND, Davis JC, Petrov DA (2005b) Codon bias and noncoding GC content correlate negatively with recombination rate on the Drosophila X chromosome. J Mol Evol 61:315–324

    Google Scholar 

  • Slawson EE, Shaffer CD, Malone CD, et al. (2006) Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains. Genome Biol 7:R15

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • van de Lagemaat LN, Landry JR, Mager DL, Medstrand P (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet 19:530–536

    Article  PubMed  CAS  Google Scholar 

  • Venter JC, Adams MD, Myers EW, et al. (2001) The sequence of the human genome. Science 291:1304–1351

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Keightley PD, Johnson T (2006) MCALIGN2: faster, accurate global pairwise alignment of non-coding DNA sequences based on explicit models of indel evolution. BMC Bioinform 7:292

    Article  CAS  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  CAS  Google Scholar 

  • White SE, Habera LF, Wessler SR (1994) Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc Natl Acad Sci USA 91:11792–11796

    Article  PubMed  CAS  Google Scholar 

  • Yang H-P, Hung T-L, You T-L, Yang T-H (2006) Genomewide comparative analysis of the highly abundant transposable element DINE-1 suggests a recent transpositional burst in Drosophila yakuba. Genetics 173(1):189–196

    Article  PubMed  CAS  Google Scholar 

  • Yi S, Summers TJ, Pearson NM, Li W-H (2004) Recombination has little effect on the rate of sequence divergence in pseudoautosomal boundary 1 among humans and great apes. Genome Res 14:37–43

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Genome Sequence Center, WUSTL School of Medicine, the Broad Institute of MIT and Harvard, and the Berkeley Drosophila Genome Project for providing the genome sequences we analyzed in this study. We also thank Flybase and NCBI for providing genome annotation data. We thank Toby Johnson, Daniel Gaffney, and Brian Charlesworth for helpful comments. J.W. was supported by the Dorothy Hodgkin Postgraduate Studentship Award. Funding for D.L.H. was provided by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Halligan.

Electronic supplementary material

Electronic supplementary material

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Keightley, P.D. & Halligan, D.L. Effect of Divergence Time and Recombination Rate on Molecular Evolution of Drosophila INE-1 Transposable Elements and Other Candidates for Neutrally Evolving Sites. J Mol Evol 65, 627–639 (2007). https://doi.org/10.1007/s00239-007-9028-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-007-9028-6

Keywords

Navigation