Skip to main content
Log in

Synonymous substitution rates in Drosophila: Mitochondrial versus nuclear genes

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Synonymous substitution rates in mitochondrial and nuclear genes of Drosophila were compared. To make accurate comparisons, we considered the following: (1) relative synonymous rates, which do not require divergence time estimates, should be used; (2) methods estimating divergence should take into account base composition; (3) only very closely related species should be used to avoid effects of saturation; (4) the heterogeneity of rates should be examined. We modified the methods estimating synonymous substitution numbers to account for base composition bias. By using these methods, we found that mitochondrial genes have 1.7—3.4 times higher synonymous substitution rates than the fastest nuclear genes or 4.5–9.0 times higher rates than the average nuclear genes. The average rate of synonymous transversions was 2.7 (estimated from the melanogaster species subgroup) or 2.9 (estimated from the obscura group) times higher in mitochondrial genes than in nuclear genes. Synonymous transversions in mitochondrial genes occurred at an approximately equivalent rate to those in the fastest nuclear genes. This last result is not consistent with the hypothesis that the difference in turnover rates between mitochondrial and nuclear genomes is the major factor determining higher synonymous substitution rates in mtDNA. We conclude that the difference in synonymous substitution rates is due to a combination of two factors: a higher transitional mutation rate in mtDNA and constraints on nuclear genes due to selection for codon usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayala FJ, Chang BSW, Hartl DL (1993) Molecular evolution of the Rh3 gene in Drosophila. Genetica 92:23–32

    Article  PubMed  CAS  Google Scholar 

  • Ayala FJ, Hartl DL (1993) Molecular drift of the bride of sevenless (boss) gene in Drosophila. Mol Biol Evol 10:1030–1040

    PubMed  CAS  Google Scholar 

  • Ballard JWO, Kreitman M (1994) Unraveling selection in the mitochondrial genome of Drosophila. Genetics 138:757–772

    PubMed  CAS  Google Scholar 

  • Ballard JWO, Kreitman M (1995) Is mitochondrial DNA a strictly neutral marker? TREE 10:485–188

    Google Scholar 

  • Begun DJ, Aquadro CF (1994) Evolutionary inferences from DNA variation at the 6-phosphogluconate dehydrogenase locus in natural populations of Drosophila: selection and geographic differentiation. Genetics 136:155–171

    PubMed  CAS  Google Scholar 

  • Berry AJ, Ajioka JW, Kreitman M (1991) Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics 129:1111–1117

    PubMed  CAS  Google Scholar 

  • Berthier F, Renaud M, Alziari S, Durand R (1986) RNA mapping on Drosophila mitochondrial DNA: precursors and template strands. Nucleic Acids Res 14:4519–4533

    Article  PubMed  CAS  Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239

    Article  PubMed  CAS  Google Scholar 

  • Caccone A, Amato GD, Powell JR (1988) Rates and patterns of scnDNA and mtDNA divergence within the Drosophila melanogaster subgroup. Genetics 118:671–683

    PubMed  CAS  Google Scholar 

  • Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271

    Article  PubMed  CAS  Google Scholar 

  • Comeron JM (1995) A method for estimating the numbers of synonymous and nonsynonymous substitutions per site. J Mol Evol 41: 1152–1159

    Article  PubMed  CAS  Google Scholar 

  • DeSalle R, Freedman T, Prager EM, Wilson AC (1987) Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila. J Mol Evol 26:157–164

    Article  PubMed  CAS  Google Scholar 

  • FlyBase (1997) FlyBase —A Drosophila database. Nucleic Acids Res 25:63–66 [http://flybase.bio.indiana.edu/]

    Article  Google Scholar 

  • Gleason JM, Caccone A, Moriyama EN, White KP, Powell JR (1997) Mitochondrial DNA phylogenies for the Drosophila obscura group. Evolution 51:433–440

    Article  CAS  Google Scholar 

  • Hilton H, Kliman RM, Hey J (1994) Using hitchhiking genes to study adaptation and divergence during speciation within the Drosophila melanogaster species complex. Evolution 48:1900–1913

    Article  CAS  Google Scholar 

  • Ina Y (1995) New methods for estimating the numbers of synonymous and nonsynonymous substitutions. J Mol Evol 40:190–226

    Article  PubMed  CAS  Google Scholar 

  • Ina Y (1997) Pattern of synonymous and nonsynonymous substitutions: an indicator of mechanisms of molecular evolution. J Genet 75:91–115

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Li W-H (1993) Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol 36:96–99

    Article  PubMed  CAS  Google Scholar 

  • Li W-H, Wu C-I, Luo C-C (1985) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2:150–174

    PubMed  Google Scholar 

  • Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Hayashida H, Kikuno R, Hasegawa M, Kobayashi M, Koike K (1982) Molecular clock of silent substitution: at least six-fold preponderance of silent changes in mitochondrial genes over those in nuclear genes. J Mol Evol 19:28–35

    Article  PubMed  CAS  Google Scholar 

  • Moriyama EN, Gojobori T (1992) Rates of synonymous substitution and base composition of nuclear genes in Drosophila. Genetics 130:855–864

    PubMed  CAS  Google Scholar 

  • Moriyama EN, Hartl DL (1993) Codon usage bias and base composition of nuclear genes in Drosophila. Genetics 134:847–858

    PubMed  CAS  Google Scholar 

  • Moriyama EN, Powell JR (in press) Codon usage bias and tRNA abundance in Drosophila. J Mol Evol

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous substitutions. Mol Biol Evol 3:418–426

    PubMed  CAS  Google Scholar 

  • Pamilo P, Bianchi NO (1993) Evolution of the Zfx and Zfy genes: rates and interdependence between the genes. Mol Biol Evol 10:271–281

    PubMed  CAS  Google Scholar 

  • Pesole G, Dellisanti G, Preparata G, Saccone C (1995) The importance of base composition in the correct assessment of genetic distance. J Mol Evol 41:1124–1127

    Article  CAS  Google Scholar 

  • Powell JR (1983) Interspecific cytoplasmic gene flow in the absence of nuclear gene flow: evidence from Drosophila. Proc Natl Acad Sci USA 80:492–95

    Article  PubMed  CAS  Google Scholar 

  • Powell JR, Caccone A, Amato GD, Yoon C (1986) Rates of nucleotide substitution in Drosophila mitochondrial DNA and nuclear DNA are similar. Proc Natl Acad Sci USA 83:9090–9093

    Article  PubMed  CAS  Google Scholar 

  • Powell JR, Moriyama EN (1997) Evolution of codon usage bias in Drosophila. Proc Natl Acad Sci USA 94:7784–7790

    Article  PubMed  CAS  Google Scholar 

  • Rand DM (1994) Thermal habit, metabolic rate and the evolution of mitochondrial DNA. TREE 9:125–131

    Google Scholar 

  • Rand DM, Dorfsman M, Kann LM (1994) Neutral and non-neutral evolution of Drosophila mitochondrial DNA. Genetics 138:741–756

    PubMed  CAS  Google Scholar 

  • Rand DM, Kann LM (1996) Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans. Mol Biol Evol 13:735–748

    PubMed  CAS  Google Scholar 

  • Satta Y, Ishiwa H, Chigusa SI (1987) Analysis of nucleotide substitutions of mitochondrial DNAs in Drosophila melanogaster and its sibling species. Mol Biol Evol 4:638–650

    PubMed  CAS  Google Scholar 

  • Sharp PM, Li W-H (1989) On the rate of DNA sequence evolution in Drosophila. J Mol Evol 28:398–402

    Article  PubMed  CAS  Google Scholar 

  • Shields DC, Sharp PM, Higgins DG, Wright F (1988) “Silent” sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol Biol Evol 5:704–716

    PubMed  CAS  Google Scholar 

  • Simmons GM, Kwok W, Matulonis P, Venkatesh T (1994) Polymorphism and divergence at the prune locus in Drosophila melanogaster and D. simulons. Mol Biol Evol 11:666–671

    PubMed  CAS  Google Scholar 

  • Solignac M, Monnerot M, Mounolou J-C (1986) Mitochondrial DNA evolution in the melanogaster species subgroup of Drosophila. J Mol Evol 23:31–40

    Article  PubMed  CAS  Google Scholar 

  • Tamura K (1992a) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol Biol Evol 9:678–687

    PubMed  CAS  Google Scholar 

  • Tamura K (1992b) The rate and pattern of nucleotide substitution in Drosophila mitochondrial DNA. Mol Biol Evol 9:814–825

    PubMed  CAS  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Wells RS (1995) Nucleotide variation at the Gpdh locus in the genus Drosophila. Genetics 143:375–384

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moriyama, E.N., Powell, J.R. Synonymous substitution rates in Drosophila: Mitochondrial versus nuclear genes. J Mol Evol 45, 378–391 (1997). https://doi.org/10.1007/PL00006243

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00006243

Key words

Navigation