Skip to main content
Log in

Long Repeats in a Huge Genome: Microsatellite Loci in the Grasshopper Chorthippus biguttulus

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

It is commonly believed that both the average length and the frequency of microsatellites correlate with genome size. We have estimated the frequency and the average length for 69 perfect dinucleotide microsatellites in an insect with an exceptionally large genome: Chorthippus biguttulus (Orthoptera, Acrididae). Dinucleotide microsatellites are not more frequent in C. biguttulus, but repeat arrays are 1.4 to 2 times longer than in other insect species. The average repeat number in C. biguttulus lies in the range of higher vertebrates. Natural populations are highly variable. At least 30 alleles per locus were found and the expected heterozygosity is above 0.95 at all three loci studied. In contrast, the observed heterozygosity is much lower (≤0.51), which could be caused by long null alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Achmann R, Heller KG (2000) Identification of polymorphic autosomaland sex chromosome specific DNA microsatellites in the bushcricket, Poecilimon hoelzeli (Orthoptera, Tettigonioidea, Phaneropteridae). Mol Ecol 9:1674–1675

    Article  CAS  PubMed  Google Scholar 

  • Amos W (1999) A comparative approach to the study of microsatellite evolution. In: Goldstein DB, Schlötterer C (eds). Microsatellite evolution and applications. Oxford University Press, Oxford, pp 66–79

    Google Scholar 

  • Annan Z, Kengne P, Berthomieu A, Antonio–Nkondjio C(2003) Isolation and characterisation of polymorphic microsatellite markers from the mosquito Anopheles moucheti, malaria vector in Africa. Mol Ecol Notes 3:56–58

    Article  CAS  Google Scholar 

  • Armour JAL, Neumann R, Gobert S, Jeffreys AJ (1994) Isolation of human simple repeat loci by hybridisation selection. Hum Mol Genet 3:599–605

    CAS  PubMed  Google Scholar 

  • Bachtrog D, Wiess S, Zangerl B, Brem G, Schlötterer C (1999) Distribution of dinucleotide microsatellites in the Drosophila melanogaster genome. Mol Biol Evol 16:602–610

    CAS  PubMed  Google Scholar 

  • Baltimore D (2001) Our genome unveiled. Nature 409:814–816

    Article  CAS  PubMed  Google Scholar 

  • Bell GI, Jurka J (1997) The length distribution of perfect dimer repetitive DNA is consistent with its evolution by an unbiased single-step mutation process. J Mol Evol 44:414–421

    Article  CAS  PubMed  Google Scholar 

  • Bensasson D, Petrov DA, Zhang DX, Hartl DL, Hewitt GM (2001) Genomic gigantism: DNA loss is slow in mountain grasshoppers. Mol Biol Evol 18:246–253

    CAS  PubMed  Google Scholar 

  • Butcher RD, Hubbard SF, Whitfield WG (2000) Microsatellite frequency and size variation in the parthenogenetic parasitic wasp Venturia canescens (Gravenhorst) (Hymenoptera:Ichneumonidae). Insect Mol Biol 9:375–384

    Article  CAS  PubMed  Google Scholar 

  • Calabrese P, Durrett R (2003) Dinucleotide repeats in the Drosophila and human genomes have complex, length–dependent mutation processes. Mol Biol Evol 20:715–725

    CAS  PubMed  Google Scholar 

  • Calabrese PP, Durrett RT, Aquadro CF (2001) Dynamics of microsatellite divergence under stepwise mutation and proportional slippage/point mutation models. Genetics 159:839–852

    CAS  PubMed  Google Scholar 

  • Castella V, Ruedi M (2000) Characterization of highly variable microsatellite loci in the bat Myotis myotis (Chiroptera: Vespertilionidae). Mol Ecol 9:1000–1002

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1985) The evolution of genome size. John Wiley, New York

    Google Scholar 

  • Cheng S, Barcelo JM, Korneluk RG (1996) Characterization of large CTG repeat expansions in myotonic dystrophy alleles using PCR. Hum Mutat 7:304–310

    Article  CAS  PubMed  Google Scholar 

  • Comeron JM (2001) What controls the length of noncoding DNA? Curr Opin Genet Dev 11:652–659

    Article  CAS  PubMed  Google Scholar 

  • Dawson DA, Wilcock HR (2002) Isolation of polymorphic microsatellite loci in the net-spinning caddisfly, Polycentropus flavomaculatus (Polycentropodidae). Mol Ecol Notes 2:514–517

    Article  CAS  Google Scholar 

  • Dawson DA, Bretman AJ, Tregenza T, Burke T (2003) Microsatellite loci for the field cricket, Gryllus bimaculatus and their cross utility in other species of Orthoptera. Mol Ecol Notes 3:191–195

    CAS  Google Scholar 

  • Dawson DA, Rossiter SJ, Jones G, Faulkes CG (2004) Microsatellite loci for the greater horseshoe bat, Rhinolophus ferrumequinum (Rhinolophidae, Chiroptera) and their cross-utility in 17 other bat species. Mol Ecol Notes 4:96–100

    Article  CAS  Google Scholar 

  • Dechmann DKN, Garbely E, Kerth G, Garner TWJ (2002) Highly polymorphic microsatellites for the study of the round-eared bat, Tonatia silvicola (d’Orbigny). Conserv Genet 3:455–458

    Article  CAS  Google Scholar 

  • Dieringer D, Schlötterer C (2003a) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169

    Article  CAS  Google Scholar 

  • Dieringer D, Schlötterer C (2003b) Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Res 13:2242–2251

    Article  CAS  Google Scholar 

  • Eisen JA (1999) Mechanistic basis for microsatellite instability. In: Goldstein DB, Schlötterer C (eds). Microsatellite evolution and applications. Oxford University Press, Oxford, pp 34–48

    Google Scholar 

  • Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet 16:551–558

    Article  CAS  PubMed  Google Scholar 

  • England PR, Briscoe D A, Frankham R (1996) Microsatellite polymorphism in a wild population of Drosophila melanogaster. Genet Res 67:285–290

    CAS  PubMed  Google Scholar 

  • Estoup A, Cornuet JM (1999) Microsatellite evolution: inferences from population data. In: Goldstein DB, Schlötterer C (eds). Microsatellite evolution and applications. Oxford University Press, Oxford, pp 49–65

    Google Scholar 

  • Estoup A, Solignac M, Harry M, JCornuet M (1993) Characterization of (GT)n and (CT)n microsatellites in two insect species: Apis mellifera and Bombus terrestris. Nucleic Acids Res 21:1427–1431

    CAS  PubMed  Google Scholar 

  • Flanagan NS, Blum MJ, Davison A, Alamo M, Albarran R, Faulhaber K, Peterson E, McMillan WO (2002) Characterization of microsatellite loci in neotropical Heliconius butterflies. Mol Ecol Notes 2:398–401

    Article  CAS  Google Scholar 

  • Garner TW (2002) Genome size and microsatellites:the effect of nuclear size on amplification potential. Genome 45:212–215

    Article  CAS  PubMed  Google Scholar 

  • Garza JC, Slatkin M, Freimer NB (1995) Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. Mol Biol Evol 12:594–603

    CAS  PubMed  Google Scholar 

  • Gregory TR (2001) Animal genome size database; http://wwwgenomesizecom

  • Gutierrez PJ, Wang TS (2003) Genomic instability induced by mutations in Saccharomyces cerevisiae POL1. Genetics 165:65–81

    CAS  PubMed  Google Scholar 

  • Hancock JM (1996) Simple sequences and the expanding genome. Bioessays 18:421–425

    Article  CAS  PubMed  Google Scholar 

  • Hancock JM (1999) Microsatellites and other simple sequences: genomic context and mutational mechanisms. In: Goldstein D B, Schlötterer C (eds). Microsatellite evolution and applications. Oxford University Press, Oxford, pp 1–9

    Google Scholar 

  • Hancock JM (2002) Genome size and the accumulation of simple sequence repeats:implications of new data from genome sequencing projects. Genetica 115:93–103

    Article  CAS  PubMed  Google Scholar 

  • Harr B, Schlötterer C (2000) Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times, which cause their genome-wide underrepresentation. Genetics 155:1213–1220

    CAS  PubMed  Google Scholar 

  • Harr B, Todorova J, Schlötterer C (2002) Mismatch repair-driven mutational bias in D melanogaster. Mol Cell 10:199–205

    Article  CAS  PubMed  Google Scholar 

  • Heckel G, Achmann R, Mayer F (2000) Highly polymorphic microsatellite markers in the white-lined bat (Saccopteryx bilineata). Mol Ecol 9:242–244

    Article  CAS  PubMed  Google Scholar 

  • Hutter C M, Schug M D, Aquadro C F (1998) Microsatellite variation in Drosophila melanogaster and Drosophila simulans: a reciprocal test of the ascertainment bias hypothesis. Mol Biol Evol 15:1620–1636

    CAS  PubMed  Google Scholar 

  • Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18:1161–1167

    CAS  PubMed  Google Scholar 

  • Keyghobadi N, Roland J, Strobeck C (1999) Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae). Mol Ecol 8:1481–1495

    Article  PubMed  Google Scholar 

  • Keyghobadi N, Roland J, Strobeck C, (2002) Isolation of novel microsatellite loci in the Rocky Mountain apollo butterfly, Parnassius smintheus. Hereditas 136:247–50

    Article  PubMed  Google Scholar 

  • Kruglyak S, Durrett RT, Schug MD, Aquadro CF (1998) Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natl Acad Sci USA 95:10774–10778

    Article  CAS  PubMed  Google Scholar 

  • Lai Y, Sun F (2003) The relationship between microsatellite slippage mutation rate and the number of repeat units. Mol Biol Evol 20:2123–2131

    CAS  PubMed  Google Scholar 

  • Li Y C, Korol A B, Fahima T, Beiles A, Nevo E (2002) Microsatellites:genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465

    Article  CAS  PubMed  Google Scholar 

  • Lim S, Notley-McRobb L, Lim M, Carter D A (2004) A comparison of the nature and abundance of microsatellites in 14 fungal genomes. Fungal Genet Biol 41:1025–1036

    Article  CAS  PubMed  Google Scholar 

  • Mayer F, Schlotterer C, Tautz D (2000) Polymorphic microsatellite loci in vespertilionid bats isolated from the noctule bat Nyctalus noctula. Mol Ecol 9:2208–2212

    CAS  PubMed  Google Scholar 

  • Müllenbach R, Lagoda PJ, Welter C (1989) An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet 5:391

    PubMed  Google Scholar 

  • Neff BD, Gross MR (2001) Microsatellite evolution in vertebrates:inference from AC dinucleotide repeats. Evolution 55:1717–1733

    CAS  PubMed  Google Scholar 

  • Ortega J, Maldonado JE, Arita HT, Wilkinson GS, Fleischer RC (2002) Characterization of microsatellite loci in the Jamaican fruit-eating bat Artibeus jamaicensis and cross-species amplification. Mol Ecol Notes 2:462–464

    Article  CAS  Google Scholar 

  • Pascual M, Schug MD, Aquadro CF (2000) High density of long dinucleotide microsatellites in Drosophila subobscura. Mol Biol Evol 17:1259–1267

    CAS  PubMed  Google Scholar 

  • Petrov DA (2001) Evolution of genome size:new approaches to an old problem. Trends Genet 17:23–28

    Article  CAS  PubMed  Google Scholar 

  • Petrov DA, Sangster TA, Johnston JS, Hartl DL, Shaw KL (2000) Evidence for DNA loss as a determinant of genome size. Science 287:1060–1062

    Article  CAS  PubMed  Google Scholar 

  • Rassmann K, Schlötterer C, Tautz D (1991) Isolation of simple-sequence loci for use in polymerase chain reaction based DNA fingerprinting. Electrophoresis 12:113–118

    Article  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 12): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rossiter SJ, Burland TM, Jones G, Barratt EM (1999) Characterization of microsatellite loci in the greater horseshoe bat Rhinolophus ferrumequinum. Mol Ecol 8:1959–1960

    Article  CAS  PubMed  Google Scholar 

  • Schlötterer C (1998) Microsatellite DNA. In: Hoelzel AR (eds). Molecular genetic analyses of populations: a practical approach. Oxford University Press, Oxford, pp 237–261

    Google Scholar 

  • Schlötterer C, Tautz D (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Res 20:211–215

    PubMed  Google Scholar 

  • Schlötterer C, Harr B (2000) Drosophila virilis has long and highly polymorphic microsatellites. Mol Biol Evol 17:1641–1646

    PubMed  Google Scholar 

  • Schug MD, Wetterstrand KA, Gaudette MS, Lim RH, Hutter CM, Aquadro CF (1998) The distribution and frequency of microsatellite loci in Drosophila melanogaster. Mol Ecol 7:57–70

    Article  CAS  PubMed  Google Scholar 

  • Takami Y, Katada S (2001) Microsatellite DNA markers for the ground beetle Carabus insulicola. Mol Ecol Notes 1:128–130

    CAS  Google Scholar 

  • Thoren PA, Paxton RJ, Estoup A (1995) Unusually high frequency of (CT)n and (GT)n microsatellite loci in a yellowjacket wasp, Vespula rufa (L) (Hymenoptera:Vespidae). Insect Mol Biol 4:141–148

    CAS  PubMed  Google Scholar 

  • Tóth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes:survey and analysis. Genome Res 10:967–981

    PubMed  Google Scholar 

  • Warner JP, Barron LH, Goudie D, Kelly K, Dow D, Fitzpatrick DR, Brock DJ (1996) A general method for the detection of large CAG repeat expansions by fluorescent PCR. J Med Genet 33:1022–1026

    CAS  PubMed  Google Scholar 

  • Warner RD, Noor MA (2000) High frequency of microsatellites in Drosophila pseudoobscura. Genes Genet Syst 75:115–118

    Article  CAS  PubMed  Google Scholar 

  • Watts PC, Noyes HA, Kemp SJ (2002) Polymorphic dinucleotide microsatellite loci in the sandfly Lutzomyia longipalpis (Diptera: Phlebotominae). Mol Ecol Notes 2:62–64

    CAS  Google Scholar 

  • Whittaker JC, Harbord RM, Boxall N, Mackay I, Dawson G, Sibly RM (2003) Likelihood-based estimation of microsatellite mutation rates. Genetics 164:781–787

    PubMed  Google Scholar 

  • Wierdl M, Dominska M, Petes TD (1997) Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics 146:769–779

    CAS  PubMed  Google Scholar 

  • Wilcock HR, Hildrew AG, Nichols RA, Bruford MW (2001) Microsatellites for the net-spinning caddisfly Plectrocnemia conspersa (Polycentropodidae). Mol Ecol Notes 1:318–319

    CAS  Google Scholar 

  • Xu X, Peng M, Fang Z (2000) The direction of microsatellite mutations is dependent upon allele length. Nat Genet 24:396–399

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Eric Petit for his help and advice and to Andrea Ross and Melanie Decker for assistance in the laboratory. We also thank two anonymous reviewers for helpful comments on the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (F.M.) and the Hochschul- und Wissenschaftsprogramm “Chancengleichheit für Frauen in Forschung und Lehre” (J.U.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Ustinova.

Additional information

[Reviewing Editor: Dr. Dmitri Petrov]

Sequence data from this article have been deposited with the EMBL/GenBank databases under accession numbers AY532396–AY532400.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ustinova, J., Achmann, R., Cremer, S. et al. Long Repeats in a Huge Genome: Microsatellite Loci in the Grasshopper Chorthippus biguttulus. J Mol Evol 62, 158–167 (2006). https://doi.org/10.1007/s00239-005-0022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0022-6

Keywords

Navigation