Skip to main content

Principles of Human Genetics and Mendelian Inheritance

  • Chapter
  • First Online:
Neurometabolic Hereditary Diseases of Adults

Abstract

Every species has a particular series of inherited characteristics (traits), which determines a developmental plan and distinguishes one species from another. Differences between individuals of the same species (variations) are the result of genetic, epigenetic, and/or environmental factors. As the molecular support of heredity of any living organism, genes are transmitted from parents to offspring during the process of reproduction. A gene is the basic physical and functional unit of heredity. The concept of gene was recently redefined as a locatable region of genomic sequence, corresponding to a unit of inheritance, associated with regulatory regions, transcribed regions, and/or other functional sequence regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Griffiths AJF, Pearson H. Genetics: what is a gene? Nature. 2006;441:398–401.

    Article  CAS  Google Scholar 

  2. Watson JD, Crick FHC. Molecular structure of nucleic acids: a structure for desoxyribose nucleic acid. Nature. 1953;171:737–8.

    Article  CAS  PubMed  Google Scholar 

  3. Collins FS, Morgan M, Patrinos A. The human genome project: lessons from large scale biology. Science. 2003;300:286–90.

    Article  CAS  PubMed  Google Scholar 

  4. Ecker JR, Bickmore WA, Barroso I, Pritchard JK, Gilad Y, Segal E. Genomics: ENCODE explained. Nature. 2012;489:52–5.

    Article  CAS  PubMed  Google Scholar 

  5. Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, et al. A draft map of the human proteome. Nature. 2014;509:575–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.

    Article  CAS  PubMed  Google Scholar 

  7. Griffiths AJF, et al. An introduction to genetic analysis. 10th ed. New York: W H Freeman & Company; 2012.

    Google Scholar 

  8. Brown TA. Genomes. 2nd ed. Oxford: Wiley-Liss; 2002.

    Google Scholar 

  9. Germain DP. Gaucher’s disease: a paradigm for interventional genetics. Clin Genet. 2004;65:77–86.

    Article  CAS  PubMed  Google Scholar 

  10. Germain DP, Hughes DA, Nicholls K, Bichet DG, Giugliani R, Wilcox WR, et al. Treatment of Fabry’s disease with the pharmacologic chaperone Migalastat. N Engl J Med. 2016;375:545–55.

    Article  CAS  PubMed  Google Scholar 

  11. Popp MW-L, Maquat LE. Organizing principles of mammalian nonsense-mediated mRNA decay. Annu Rev Genet. 2013;47:139–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Turnpenny PD, Ellard S. Emery’s elements of medical genetics. 14th ed. Philadelphia: Elsevier; 2012.

    Google Scholar 

  13. Germain DP. Fabry disease. Orphanet J Rare Dis. 2010;5:30.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Buratti E, Chivers M, Královicová J, Romano M, Baralle M, Krainer AR, et al. Aberrant 50 splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization. Nucleic Acids Res. 2007;35:4250–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mendel JG. Versuche über Pflanzenhybriden Verhandlungen des naturforschenden Vereines in Brünn. Abhandlungen: Bd. IV für das Jahr; 1865. p. 3–47.

    Google Scholar 

  16. Bodmer WF, Cavalli-Sforza LL. Genetics, Evolution, and Man. W. H. Freeman and Company; 1976.

    Google Scholar 

  17. Hartl DL, Jones EW. Genetics—principles and analysis. 4th ed. Sudbury: Jones and Bartlett Publishers; 1998.

    Google Scholar 

  18. Roach ES. Sickle cell trait: innocent until proven guilty. Arch Neurol. 2005;62:1781–2.

    Article  CAS  PubMed  Google Scholar 

  19. Nussbaum RL, McInnes RR, Willard HF. Thompson & Thompson genetics in medicine. 8th ed. Philadelphia: Elsevier; 2015.

    Google Scholar 

  20. Veltman JA, Brunner HG. De novo mutations in human genetic disease. Nat Rev Genet. 2012;13:565–75.

    Article  CAS  PubMed  Google Scholar 

  21. Acuna-Hidalgo R, Bo T, Kwint MP, van de Vorst M, Pinelli M, Veltman JA, Hoischen A, Vissers LE, Gilissen C. Post-zygotic point mutations are an under-recognized source of de novo genomic variation. Am J Hum Genet. 2015;97:67–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goldstein JL, Brown MS. History of discovery: the LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29:431–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Germain DP. Ehlers-Danlos syndrome type IV. Orphanet J Rare Dis. 2007;2:32.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bittles AH. Consanguinity and its relevance to clinical genetics. Clin Genet. 2001;60:89–98.

    Article  CAS  PubMed  Google Scholar 

  25. Bittles AH, Black ML. Consanguinity, human evolution, and complex diseases. Proc Natl Acad Sci. 2010;107:1779–86.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hamamy H, Antonarakis SE, Cavalli-Sforza LL, Temtamy S, Romeo G, Kate LP, et al. Consanguineous marriages, pearls and perils: Geneva International Consanguinity Workshop report. Genet Med. 2011;13:841–7.

    Article  PubMed  Google Scholar 

  27. Zlotogora J, Bach G, Munnich A. Molecular basis of Mendelian disorders among Jews. Mol Genet Metab. 2000;69:169–80.

    Article  CAS  PubMed  Google Scholar 

  28. Zeevi DA, Altarescu G, Weinberg-Shukron A, Zahdeh F, Dinur T, Chicco G, et al. Proof-of-principle rapid noninvasive prenatal diagnosis of autosomal recessive founder mutations. J Clin Invest. 2015;125:3757–65.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sidransky E. Gaucher Disease: insights from a rare Mendelian disorder. Discov Med. 2012;14:273–81.

    PubMed  PubMed Central  Google Scholar 

  30. Diaz GA, Gelb BD, Risch N, Nygaard TG, Frisch A, Cohen IJ, et al. Gaucher disease: the origins of the Ashkenazi Jewish N370S and 84GG acid beta-glucosidase mutations. Am J Hum Genet. 2000;66:1821–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kishnani PS, Corzo D, Nicolino M, et al. Recombinant human acid [altha]-glucosidase: major clinical benefits in infantile onset Pompe disease. Neurology. 2007;68(2):99–109.

    Article  CAS  PubMed  Google Scholar 

  32. Kroos M, Hoogeveen-Westerveld M, Michelakakis H, Pomponio R, van der Ploeg A, Halley D, et al. Update of the Pompe disease mutation database with 60 novel GAA sequence variants and additional studies on the functional effect of 34 previously reported variants. Hum Mutat. 2012;33:1161–5.

    Article  CAS  PubMed  Google Scholar 

  33. Dobyns WB, Filauro A, Tomson BN, Chan AS, Ho AW, Ting NT, et al. Inheritance of most X-linked traits is not dominant or recessive, just X-linked. Am J Med Genet. 2004;129:136–43.

    Article  Google Scholar 

  34. Harper PS. Practical genetic counselling. 7th ed. London: CRC Press; 2010.

    Google Scholar 

  35. Lyon MF. Gene action in the X-chromosome of the mouse (mus musculus L.). Nature. 1961;190:372–3.

    Article  CAS  PubMed  Google Scholar 

  36. Minks J, Robinson WP, Brown CJ. A skewed view of X chromosome inactivation. J Clin Invest. 2008;118:20–3.

    Article  CAS  PubMed  Google Scholar 

  37. Amos-Landgraf JM, Cottle A, Plenge RM, Friez M, Schwartz CE, Longshore J, et al. X chromosome-inactivation patterns of 1,005 phenotypically unaffected females. Am J Hum Genet. 2006;79:493–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Echevarria L, Benistan K, Toussaint A, Dubourg O, Hagège AA, Eladari D, et al. X-chromosome inactivation in female patients with Fabry disease. Clin Genet. 2016;89:44–54.

    Article  CAS  PubMed  Google Scholar 

  39. Carrel L, Willard HF. X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature. 2005;434:400–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique P. Germain M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Germain, D.P., Jurca-Simina, I.E. (2018). Principles of Human Genetics and Mendelian Inheritance. In: Burlina, A. (eds) Neurometabolic Hereditary Diseases of Adults. Springer, Cham. https://doi.org/10.1007/978-3-319-76148-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76148-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76146-6

  • Online ISBN: 978-3-319-76148-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics