Skip to main content

Advertisement

Log in

Role of diffusion weighted imaging for differentiating cerebral pilocytic astrocytoma and ganglioglioma BRAF V600E-mutant from wild type

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

BRAF V600E mutation is a distinctive genomic alteration of pediatric low-grade gliomas with prognostic and therapeutic implications. The aim of this retrospective multicenter study was to analyze imaging features of BRAF V600E-mutant and wild-type cerebral pilocytic astrocytomas (PAs) and gangliogliomas (GGs), focusing on the role of diffusion weighted imaging (DWI).

Methods

We retrospectively evaluated 56 pediatric patients with histologically proven, treatment-naïve PAs and GGs who underwent conventional MRI, DWI, and molecular analysis for BRAF V600E mutation. Twenty-three subjects presented BRAF V600E-mutant (12 PAs and 11 GGs) and 33 BRAF V600E wild-type (26 PAs and 7 GGs) tumors. Imaging studies were reviewed for dominant site, margin definition, hemorrhage, calcification, cystic components, contrast enhancement, and relative mean and minimum ADC values (rADCmean and rADCmin). Statistics included Fisher’s exact test, Student t test, general linear model, and receiver operating characteristic (ROC) analysis.

Results

PA and GG BRAF V600E-mutant had significantly lower rADCmean (p < 0.001) and rADCmin (p < 0.001) values than wild type, regardless of tumor histology and location. ROC analysis demonstrated similar performances between these parameters in predicting BRAF V600E status (rADCmean: AUC 0.831, p < 0.001; rADCmin: AUC 0.885, p < 0.001).

No significant differences regarding additional imaging features emerged between BRAF V600E-mutant and wild-type lesions, with the exception of the number of tumors with cystic components, significantly higher in BRAF V600E-mutant PAs (p = 0.011)

Conclusion

Assessment of the DWI characteristics of GGs and PAs may assist in predicting BRAF V600E status, suggesting a radiogenomic correlation and prompt molecular characterization of these tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. AlRayahi J, Zapotocky M, Ramaswamy V, Hanagandi P, Branson H, Mubarak W, Raybaud C, Laughlin S (2018) Pediatric brain tumor genetics: what radiologists need to know. Radiographics 38:2102–2122

    Article  PubMed  Google Scholar 

  2. Raz E, Zagzag D, Saba L, Mannelli L, Di Paolo PL, D'Ambrosio F et al (2012) Cyst with a mural nodule tumor of the brain. Cancer Imaging 12:237–244

    Article  PubMed  PubMed Central  Google Scholar 

  3. Koeller KK, Rushing EJ (2004) From the archives of the AFIP: pilocytic astrocytoma: radiologic-pathologic correlation. Radiographics 24:1693–1708

    Article  PubMed  Google Scholar 

  4. Yoon J, Cusimano M, Munoz DG (2019) Pilocytic astrocytoma vs. ganglioglioma: Progression vs. misdiagnosis, and implications in BRAF testing. J Clin Neurosci 66:231–234

    Article  PubMed  Google Scholar 

  5. Gessi M, Pietsch T (2013) The diagnostic role and clinical relevance of determination of BRAF status in brain tumors. Perinat Med 10:405–412

    CAS  Google Scholar 

  6. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  PubMed  Google Scholar 

  7. Louis DN, Ellison DW, Brat DJ, Aldape K, Capper D, Hawkins C, Paulus W, Perry A, Reifenberger G, Figarella-Branger D, von Deimling A, Wesseling P (2019) cIMPACT-NOW: a practical summary of diagnostic points from Round 1 updates. Brain Pathol 29:469–472

    PubMed  PubMed Central  Google Scholar 

  8. Yang RR, Aibaidula A, Wang W-W, Chan AK, Shi ZF, Zhang ZY et al (2018) Pediatric low-grade gliomas can be molecularly stratified for risk. Acta Neuropathol 136:641–655

    Article  CAS  PubMed  Google Scholar 

  9. Maurer G, Tarkowski B, Baccarini M (2011) Raf kinases in cancer–roles and therapeutic opportunities. Oncogene 30:3477–3488

    Article  CAS  PubMed  Google Scholar 

  10. Jacob K, Quang-Khuong D-A, Jones DTW, Witt H, Lambert S, Albrecht S et al (2011) Genetic aberrations leading to MAPK pathway activation mediate oncogene-induced senescence in sporadic pilocytic astrocytomas. Clin Cancer Res 17:4650–4660

    Article  CAS  PubMed  Google Scholar 

  11. Horbinski C (2013) ToBRAFor Not toBRAF: Is That Even a Question Anymore? J Neuropathol Exp Neurol 72:2–7

    Article  PubMed  Google Scholar 

  12. Rodriguez FJ, Lim KS, Bowers D, Eberhart CG (2013) Pathological and molecular advances in pediatric low-grade astrocytoma. Annu Rev Pathol 8:361–379

    Article  CAS  PubMed  Google Scholar 

  13. Jones DTW, Kocialkowski S, Liu L, Pearson DM, Bäcklund LM, Ichimura K et al (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68:8673–8677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Horbinski C, Nikiforova MN, Hagenkord JM, Hamilton RL, Pollack IF (2012) Interplay among BRAF, p16, p53, and MIB1 in pediatric low-grade gliomas. Neuro-Oncology 14:777–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hawkins C, Walker E, Mohamed N, Zhang C, Jacob K, Shirinian M, Alon N, Kahn D, Fried I, Scheinemann K, Tsangaris E, Dirks P, Tressler R, Bouffet E, Jabado N, Tabori U (2011) BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin Cancer Res 17:4790–4798

    Article  CAS  PubMed  Google Scholar 

  16. Schindler G, Capper D, Meyer J, Janzarik W, Omran H, Herold-Mende C, Schmieder K, Wesseling P, Mawrin C, Hasselblatt M, Louis DN, Korshunov A, Pfister S, Hartmann C, Paulus W, Reifenberger G, von Deimling A (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405

    Article  CAS  PubMed  Google Scholar 

  17. Mistry M, Zhukova N, Merico D, Rakopoulos P, Krishnatry R, Shago M, Stavropoulos J, Alon N, Pole JD, Ray PN, Navickiene V, Mangerel J, Remke M, Buczkowicz P, Ramaswamy V, Guerreiro Stucklin A, Li M, Young EJ, Zhang C, Castelo-Branco P, Bakry D, Laughlin S, Shlien A, Chan J, Ligon KL, Rutka JT, Dirks PB, Taylor MD, Greenberg M, Malkin D, Huang A, Bouffet E, Hawkins CE, Tabori U (2015) BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J Clin Oncol 33:1015–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lassaletta A, Zapotocky M, Mistry M, Ramaswamy V, Honnorat M, Krishnatry R et al (2017) Therapeutic and prognostic implications of BRAF V600E in pediatric low-grade gliomas. J Clin Oncol 35:2934–2941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaley T, Touat M, Subbiah V, Hollebecque A, Rodon J, Lockhart AC et al (2018) BRAF Inhibition in BRAFV600-mutant gliomas: results From the VE-BASKET Study. J Clin Oncol 36:3477–3484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Harreld JH, Hwang SN, Qaddoumi I, Tatevossian RG, Li X, Dalton J et al (2016) Relative ADC and location differ between posterior fossa pilocytic astrocytomas with and without gangliocytic differentiation. AJNR Am J Neuroradiol 37:2370–2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gimi B, Cederberg K, Derinkuyu B, Gargan L, Koral KM, Bowers DC, Koral K (2012) Utility of apparent diffusion coefficient ratios in distinguishing common pediatric cerebellar tumors. Acad Radiol 19:794–800

    Article  PubMed  Google Scholar 

  22. Mukherjee P, Miller JH, Shimony JS, Conturo TE, Lee BC, Almli CR et al (2001) Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. Radiology 221:349–358

    Article  CAS  PubMed  Google Scholar 

  23. Lindsay AJ, Rush SZ, Fenton LZ (2014) Pediatric posterior fossa ganglioglioma: unique MRI features and correlation with BRAF V600E mutation status. J Neuro-Oncol 118:395–404

    Article  Google Scholar 

  24. Rossi A, Gandolfo C, Morana G, Severino M, Garrè ML, Cama A (2010) New MR sequences (diffusion, perfusion, spectroscopy) in brain tumours. Pediatr Radiol 40:999–1009

    Article  PubMed  Google Scholar 

  25. Kan P, Liu JK, Hedlund G, Brockmeyer DL, Walker ML, Kestle JR (2006) The role of diffusion-weighted magnetic resonance imaging in pediatric brain tumors. Childs Nerv Syst 22:1435–1439

    Article  PubMed  Google Scholar 

  26. Lequin M, Hendrikse J (2017) Advanced MR imaging in pediatric brain tumors, clinical applications. Neuroimaging Clin N Am 27:167–190

    Article  PubMed  Google Scholar 

  27. Rumboldt Z, Camacho DL, Lake D, Welsh CT, Castillo M (2006) Apparent diffusion coefficients for differentiation of cerebellar tumors in children. AJNR Am J Neuroradiol 27:1362–1369

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Morana G, Piccardo A, Tortora D, Puntoni M, Severino M, Nozza P, Ravegnani M, Consales A, Mascelli S, Raso A, Cabria M, Verrico A, Milanaccio C, Rossi A (2017) Grading and outcome prediction of pediatric diffuse astrocytic tumors with diffusion and arterial spin labeling perfusion MRI in comparison with 18F-DOPA PET. Eur J Nucl Med Mol Imaging 44:2084–2093

    Article  CAS  PubMed  Google Scholar 

  29. Morana G, Alves CA, Tortora D, Severino M, Nozza P, Cama A et al (2017) Added value of diffusion weighted imaging in pediatric central nervous system embryonal tumors surveillance. Oncotarget 8:60401–60413

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lober RM, Cho YJ, Tang Y, Barnes PD, Edwards MS, Vogel H et al (2014) Diffusion-weighted MRI derived apparent diffusion coefficient identifies prognostically distinct subgroups of pediatric diffuse intrinsic pontine glioma. J Neuro-Oncol 117:175–182

    Article  Google Scholar 

  31. Mata-Mbemba D, Zapotocky M, Laughlin S, Taylor MD, Ramaswamy V, Raybaud C4 (2018) MRI characteristics of primary tumors and metastatic lesions in molecular subgroups of pediatric medulloblastoma: a single-center study. AJNR Am J Neuroradiol 39: 949-955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aboian MS, Solomon DA, Felton E, Mabray MC, Villanueva-Meyer JE, Mueller S, Cha S (2017) Imaging characteristics of pediatric diffuse midline gliomas with histone H3 K27M mutation. AJNR Am J Neuroradiol 38:795–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Piccardo A, Tortora D, Mascelli S, Severino M, Piatelli G, Consales A et al (2019) Advanced MR imaging and 18F-DOPA PET characteristics of H3K27M-mutant and wild-type pediatric diffuse midline gliomas. Eur J Nucl Med Mol Imaging 46:1685–1694

    Article  CAS  PubMed  Google Scholar 

  34. Sugiura Y, Nagaishi M (2019) Clinical relevance of BRAF status in glial and glioneuronal tumors: a systematic review. J Clin Neurosci 66:196–201

    Article  CAS  PubMed  Google Scholar 

  35. Gupta K, Orisme W, Harreld JH, Qaddoumi I, Dalton JD, Punchihewa C et al (2014) Posterior fossa and spinal gangliogliomas form two distinct clinicopathologic and molecular subgroups. Acta Neuropathol Commun 2:18

    Article  PubMed  PubMed Central  Google Scholar 

  36. She D, Liu J, Zeng Z, Xing Z, Cao D (2018) Diagnostic accuracy of diffusion weighted imaging for differentiation of supratentorial pilocytic astrocytoma and pleomorphic xanthoastrocytoma. Neuroradiology 60:725–773

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ho CY, Mobley BC, Gordish-Dressman H, VandenBussche CJ, Mason GE, Bornhorst M, Esbenshade AJ, Tehrani M, Orr BA, LaFrance D, Devaney JM, Meltzer BW, Hofherr SE, Burger PC, Packer RJ, Rodriguez FJ (2015) A clinicopathologic study of diencephalic pediatric low-grade gliomas with BRAF V600 mutation. Acta Neuropathol 130:575–585

    Article  CAS  PubMed  Google Scholar 

  38. Dahiya S, Haydon DH, Alvarado D, Gurnett CA, Gutmann DH, Leonard JR (2013) BRAFV600E mutation is a negative prognosticator in pediatric ganglioglioma. Acta Neuropathol 125:901–910

    Article  CAS  PubMed  Google Scholar 

  39. Gabler L, Lötsch D, Kirchhofer D, van Schoonhoven S, Schmidt HM, Mayr L et al (2019) TERT expression is susceptible to BRAF and ETS-factor inhibition in BRAF/TERT promoter double-mutated glioma. Acta Neuropathol Commun 7:128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Morana G, Piccardo A, PuntoniM NP, Cama A, Raso A et al (2015) Diagnostic and prognostic value of 18F-DOPA PET and 1H-MR spectroscopy in pediatric supratentorial infiltrative gliomas: a comparative study. Neuro-Oncology 17:1637–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morana G, Tortora D, Staglianò S, Nozza P, Mascelli S, Severino M et al (2018) Pediatric astrocytic tumor grading: comparison between arterial spin labeling and dynamic susceptibility contrast MRI perfusion. Neuroradiology 60:437–446

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Morana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Consent for publication

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

AR and GM are joint last authors.

Electronic supplementary material

ESM 1

(DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramaglia, A., Tortora, D., Mankad, K. et al. Role of diffusion weighted imaging for differentiating cerebral pilocytic astrocytoma and ganglioglioma BRAF V600E-mutant from wild type. Neuroradiology 62, 71–80 (2020). https://doi.org/10.1007/s00234-019-02304-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-019-02304-y

Keywords

Navigation