Skip to main content

Advertisement

Log in

Monitoring of the heparinization in the rabbit animal model during endovascular interventions

  • Interventional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The purpose of this study was to monitor and to optimize heparinization during endovascular procedures in the New Zealand White Rabbit (NZWR) model.

Methods

Right common carotid artery aneurysms were surgically created in 43 NZWR, with an average weight of 4,330 g (range 3,500–5,430 g). The activated partial thromboplastin time (aPTT) was measured during different stages of the interventional procedures. Blood samples were taken before and 10 min after administration of heparin and at the end of each endovascular procedure. We compared three different experimental groups: 100 U heparin, 500 U heparin and 100 U heparin plus pretreatment with aspirin and clopidogrel. The individual aPTT values were measured using a ball coagulometer.

Results

The average baseline aPTT in the rabbit is 75.2 ± 18.9 s compared to a mean of 33 s (range 26–40 s) in humans. The dosages of heparin used achieved anticoagulation in all cases. Five hundred units of heparin increased the aPTT significantly more than 100 U. No difference was found between the aPTT obtained from the 100 U and the 100 U plus pretreatment group, as aspirin and clopidogrel do not affect the coagulation cascade.

Conclusion

One hundred units of heparin can achieve anticoagulation in a similar magnitude as needed in interventional procedures in humans. This fact enhances suitability of the rabbit animal model for the testing of intravascular devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACT:

Acute coagulation time

ANOVA:

Analysis of variance

aPTT:

Activated partial thromboplastin time

CCA:

Common carotid artery

im:

Intramuscular

ISAT:

International Subarachnoid Aneurysm Trial

NZWR:

New Zealand White Rabbit

References

  1. Molyneux AJ, Kerr RS, Yu LM, Clarke M, Sneade M, Yarnold JA, Sandercock P, International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group (2005) International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet 366(9488):809–817

    Article  PubMed  Google Scholar 

  2. Raymond J, Salazkin I, Gevry G, Nguyen TN (2007) Interventional neuroradiology: the role of experimental models in scientific progress. AJNR Am J Neuroradiol 28(3):401–405

    PubMed  CAS  Google Scholar 

  3. Grunwald IQ, Papanagiotou P, Politi M, Struffert T, Roth C, Reith W (2006) Endovascular treatment of unruptured intracranial aneurysms: occurrence of thromboembolic events. Neurosurgery 58(4):612–618, discussion 612–8

    Article  PubMed  Google Scholar 

  4. Naggara O, Darsaut TE, Salazkin I, Soulez G, Guilbert F, Roy D, Weill A, Gevry G, Raymond J (2010) A new canine carotid artery bifurcation aneurysm model for the evaluation of neurovascular devices. AJNR Am J Neuroradiol 31(5):967–971

    Article  PubMed  CAS  Google Scholar 

  5. Dai D, Ding YH, Kadirvel R, Lewis DA, Kallmes DF (2010) Experience with microaneurysm formation at the basilar terminus in the rabbit elastase aneurysm model. AJNR Am J Neuroradiol 31(2):300–303

    Article  PubMed  CAS  Google Scholar 

  6. Killer M, Plenk H, Minnich B, Al-Schameri R, Lametschwantner A, Richling B (2009) Histological demonstration of healing in experimental aneurysms. Minim Invasive Neurosurg 52(4):170–175

    Article  PubMed  CAS  Google Scholar 

  7. Murayama Y, Viñuela F, Suzuki Y, Kaibara M, Kurotobi K, Iwaki M, Abe T (1999) Development of the biologically active Guglielmi detachable coil for the treatment of cerebral aneurysms. Part II: an experimental study in a swine aneurysm model. AJNR Am J Neuroradiol 20(10):1992–1999

    PubMed  CAS  Google Scholar 

  8. Massoud TF, Ji C, Guglielmi G, Viñuela F, Robert J (1994) Experimental models of bifurcation and terminal aneurysms: construction techniques in swine. AJNR Am J Neuroradiol 15:938–944

    PubMed  CAS  Google Scholar 

  9. Guglielmi G, Ji C, Massoud TF, Kurata A, Lownie SP, Viñuela F, Robert J (1994) Experimental saccular aneurysms. II. A new model in swine. Neuroradiology 36:547–550

    Article  PubMed  CAS  Google Scholar 

  10. Turk AS, Aagaard-Kienitz B, Niemann D, Consigny D, Rappe A, Grinde J, Strother CM (2007) Natural history of the canine vein pouch aneurysm model. AJNR Am J Neuroradiol 28:531–532

    Article  PubMed  CAS  Google Scholar 

  11. Dai D, Ding YH, Danielson MA, Kadirvel R, Lewis DA, Cloft HJ, Kallmes DF (2005) Histopathologic and immunohistochemical comparison of human, rabbit, and swine aneurysms embolized with platinum coils. AJNR Am J Neuroradiol 26(10):2560–2568

    PubMed  Google Scholar 

  12. Raymond J, Berthelet F, Desfaits AC, Salazkin I, Roy D (2002) Cyanoacrylate embolization of experimental aneurysms. AJNR Am J Neuroradiol 23(1):129–138

    PubMed  Google Scholar 

  13. Byrne JV, Hope JK, Hubbard N, Morris JH (1997) The nature of thrombosis induced by platinum and tungsten coils in saccular aneurysms. AJNR Am J Neuroradiol 18(1):29–33

    PubMed  CAS  Google Scholar 

  14. Carter LP, Guthkelch AN, Orozco J, Temeltas O (1992) Influence of tissue plasminogen activator and heparin on cerebral ischemia in a rabbit model. Stroke 23(6):883–888

    Article  PubMed  CAS  Google Scholar 

  15. Grunwald IQ, Romeike BF, Roth C, Struffert T, Eymann R, Reith W (2005) Anticoagulation regimes and their influence on the occlusion rate of aneurysms: an experimental study in rabbits. Neurosurgery 57(5):1048–1055

    Article  PubMed  Google Scholar 

  16. Grunwald IQ, Romeike B, Eymann R, Roth C, Struffert T, Reith W (2006) An experimental aneurysm model: a training model for neurointerventionalists. Interv Neuroradiol 12(1):17–24, Epub 2006

    PubMed  CAS  Google Scholar 

  17. Killer M, Kallmes DF, McCoy MR, Ding YH, Shum JC, Cruise GM (2009) Angiographic and histologic comparison of experimental aneurysms embolized with hydrogel filaments. AJNR Am J Neuroradiol 30(8):1488–1495

    Article  PubMed  CAS  Google Scholar 

  18. Ding YH, Dai D, Lewis DA, Danielson MA, Kadirvel R, Cloft HJ, Kallmes DF (2006) Long-term patency of elastase-induced aneurysm model in rabbits. AJNR Am J Neuroradiol 27(1):139–141

    PubMed  CAS  Google Scholar 

  19. Lehman CM, Frank EL (2009) Laboratory monitoring of heparin therapy: partial thromboplastin time or anti-Xa assay. Lab Med 40(1):47–51

    Article  Google Scholar 

  20. Reed SV, Haddon ME, Denson KW (1994) An attempt to standardize the APTT for heparin monitoring, using the P.T. ISI/INR system of calibration. Results of a 13 centre study. Thromb Res 74(5):515–522

    Article  PubMed  CAS  Google Scholar 

  21. Van der Velde EA, Poller L (1995) The APTT monitoring of heparin—the ISTH/ICSH collaborative study. Thromb Haemost 73(1):73–81

    PubMed  Google Scholar 

  22. Forrest MD, O’Reilly GV (1989) Production of experimental aneurysms at a surgically created arterial bifurcation. AJNR Am J Neuroradiol 10:400–402

    PubMed  CAS  Google Scholar 

  23. Sherif C, Marbacher S, Erhardt S, Fandino J (2011) Improved microsurgical creation of venous pouch arterial bifurcation aneurysms in rabbits. AJNR Am J Neuroradiol 32(1):165–169, Epub 2010

    PubMed  CAS  Google Scholar 

  24. Patrono C, Coller B, FitzGerald GA, Hirsh J, Roth G (2004) Platelet-active drugs: the relationships among dose, effectiveness, and side effects: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest 126(3):234–264

    Article  Google Scholar 

  25. Langdell RD, Wagner RH, Brinkhous KM (1953) Effect of anti-hemophilic factor on one-stage clotting test: a presumptive test for hemophilia and a simple one-stage anti-hemophilic factor assay procedure. J Lab Clin Med 41:637–647

    PubMed  CAS  Google Scholar 

  26. Proctor RR, Rapaport SI (1961) The partial thromboplastin time with kaolin. A simple screening test for first stage plasma clotting factor deficiencies. Am J Clin Pathol 36:212–219

    PubMed  CAS  Google Scholar 

  27. Hoh BL, Rabinov JD, Pryor JC, Ogilvy CS (2004) A modified technique for using elastase to create saccular aneurysms in animals that histologically and hemodynamically resemble aneurysms in human. Acta Neurochir (Wien) 146(7):705–711, Epub 2004

    Article  CAS  Google Scholar 

  28. Hussein HM, Georgiadis AL, Qureshi AI (2011) Point-of-care testing for anticoagulation monitoring in neuroendovascular procedures. AJNR Am J Neuroradiol 33(7):1211–1220

    Article  PubMed  Google Scholar 

  29. Castellan L, Causin F, Danieli D, Perini S (2003) Carotid stenting with filter protection: correlation of ACT values with angiographic and histopathologic findings. J Neuroradiol 30:103–108

    PubMed  CAS  Google Scholar 

  30. Yokote H, Terada T, Ryujin K, Konoshita Y, Tsuura M, Nakai E, Kamei I, Moriwaki H, Hayashi S, Itakura T (1998) Percutaneous transluminal angioplasty for intracranial arteriosclerotic lesions. Neuroradiology 40:590–596

    Article  PubMed  CAS  Google Scholar 

  31. Qureshi AI, Suri MF, Siddiqui AM, Kim SH, Boulos AS, Ringer AJ, Lopes DK, Guterman LR, Hopkins LN (2005) Clinical and angiographic results of dilatation procedures for symptomatic intracranial atherosclerotic disease. J Neuroimaging 15:240–249

    PubMed  Google Scholar 

  32. Gress DR, Smith WS, Dowd CF, Van Halbach V, Finley RJ, Higashida RT (2002) Angioplasty for intracranial symptomatic vertebrobasilar ischemia. Neurosurgery 51:23–27, discussion 27–29

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne J. Schmitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt, A.J., Wallner, A.K., Afazel, S. et al. Monitoring of the heparinization in the rabbit animal model during endovascular interventions. Neuroradiology 55, 883–888 (2013). https://doi.org/10.1007/s00234-013-1189-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-013-1189-y

Keywords

Navigation