Skip to main content

Advertisement

Log in

Cortical projection to the human red nucleus: complementary results with probabilistic tractography at 3 T

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

In a previous study using streamlined diffusion tensor imaging (DTI) axonal tracking at 1.5 T, we found that the main afferents to the human red nucleus arise from the sensorimotor and prefrontal cortices. However, the spatial resolution of our data was low and our streamlining DTI algorithm was less powerful than the probabilistic tractography algorithm usually used to define connections between low anisotropic cortical or nuclear areas. Therefore, we reassessed and completed our previous results with trajectories computed with a probabilistic algorithm and with a high-field MRI system.

Methods

Afferents to the red nuclei of five volunteers were studied at 3 T using probabilistic DTI axonal tracking.

Results

Trajectories were constantly tracked between the red nucleus and the ipsilateral prefrontal, pericentral, temporal and occipital cortices, and the ipsilateral lentiform and contralateral dentate nuclei. We showed that the dentate nucleus was connected to the mammillary tubercle and, through the contralateral ventral thalamus, to the frontal and prefrontal cortices.

Conclusion

The red nucleus receives extensive projections from the cerebral cortex and has dense subcortical connections to the striopallidal system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. ten Donkelaar HJ (1988) Evolution of the red nucleus and the rubrospinal tract. Behav Brain Res 28:9–20

    Article  PubMed  Google Scholar 

  2. Barton RA, Harvey PH (2000) Mosaic evolution of brain structure in mammals. Nature 405:1055–1058

    Article  PubMed  CAS  Google Scholar 

  3. Habas C, Cabanis EA (2006) Cortical projections to the human red nucleus: a diffusion tensor tractography study with a 1.5-T MRI machine. Neuroradiology 48:755–762

    Article  PubMed  Google Scholar 

  4. Massion J (1967) The mammalian red nucleus. Physiol Rev 47:383–436

    PubMed  CAS  Google Scholar 

  5. Humphrey DR, Gold R, Reed DJ (1984) Sizes, laminar and topographic origins of cortical projections to the major divisions of the red nucleus in the monkey. J Comp Neurol 225:75–94

    Article  PubMed  CAS  Google Scholar 

  6. Keifer J, Houk JC (1994) Motor function of the cerebellorubrospinal system. Physiol Rev 74:509–542

    PubMed  CAS  Google Scholar 

  7. Von Monakow C (1895) Experimentelle und pathologisch-anatomische Untersuchungen über die Haubenregion, den Schlügel und die Regio subthalamica nebst Beiträge zur Kenntnis früh erworbener Gross- und Kleinhirndefecte. Arch Psychiat Nervenkr 27:1–128, 386–478

    Article  Google Scholar 

  8. Archambault L (1914–1915) Les connexions corticales du noyau rouge. Nouv Iconogr Salpêtrière 27:188–225

    Google Scholar 

  9. Meyer M (1949) Study of efferent connexions of the frontal lobe in the human brain after leucotomy. Brain 72:265–296

    Article  PubMed  CAS  Google Scholar 

  10. Kanki S, Ban T (1952) Corticofugal connections of the frontal lobe in man. Med J Osaka Univ 3:201–222

    Google Scholar 

  11. Lehéricy S, Ducros M, Krainik A, François C, Van de Moortele PF, Ugurbil K, Kim DS (2004) 3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to the human striatum. Cerebral Cortex 14:1302–1309

    Article  PubMed  Google Scholar 

  12. Behrens TE, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CA, Boulby PA et al (2003) Non-invasive mappings of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6:750–757

    Article  PubMed  CAS  Google Scholar 

  13. Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, Matthews PM, Brady JM, Smith SM (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50:1077–1088

    Article  PubMed  CAS  Google Scholar 

  14. Tuch DS (2002) Diffusion MRI of complex tissue structure. PhD thesis, Harvard-MIT

  15. Tuch SD (2004) Q-ball imaging. Magn Reson Med 52:577–582

    Article  Google Scholar 

  16. Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW (2006) Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 34:144–155

    Article  PubMed  Google Scholar 

  17. Nieuwenhuys R, Voogt J, van Huijzen C (eds) (1988) The human central nervous system. A synopsis and atlas, 3rd revised edn. Springer, Berlin

    Google Scholar 

  18. Déjérine J (1980) Anatomie des centres nerveux. Tome deuxième. Masson, Paris

    Google Scholar 

  19. Johnson TN, Clemente CD (1959) An experimental study of the fibre connections between the putamen, globus pallidus, ventral thalamus and midbrain tegmentum in cat. J Comp Neurol 113:83–101

    Article  Google Scholar 

  20. Burchinskaya LF, Sukhareva NN (1988) Rubrocaudate projections in the cat. Neurophysiology 20:22–25

    Article  Google Scholar 

  21. Carpenter MB (1956) A study of the red nucleus in the rhesus monkey. Anatomical degenerations and physiologic effects resulting from localized lesions of the red nucleus. J Comp Neurol 105:195–249

    Article  PubMed  CAS  Google Scholar 

  22. Foix C, Nicolesco J (1925) Les noyaux gris centraux et la région mésencéphalo-sousoptique. Masson, Paris, p 581

    Google Scholar 

  23. Hopkins DA, Lawrence DC (1975) On the absence of a rubrothalamic projection in the monkey with observations on some ascending mesencephalic projections. J Comp Neurol 161:269–294

    Article  PubMed  CAS  Google Scholar 

  24. Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor active and cognitive circuits. Brain Res Rev 31:236–250

    Article  PubMed  CAS  Google Scholar 

  25. Morel A, Magnin M, Jeanmonod D (1997) Multiarchitectonic and stereotactic atlas of the human thalamus. J Comp Neurol 387:588–630

    Article  PubMed  CAS  Google Scholar 

  26. Haines DE, Dietrichs E (1990) Neuronal connections between the cerebellar nuclei and hypothalamus in Macaca fascicularis: cerebello-visceral circuits. J Comp Neurol 299:106–122

    Article  PubMed  CAS  Google Scholar 

  27. Patt S, Gerhard L, Zill E (1994) A Golgi study on the red nucleus in man. Histol Histopathol 9:7–10

    PubMed  CAS  Google Scholar 

  28. King JS, Schwyn RC, Fox CA (1971) The red nucleus in the monkey (Macaca mulatta): a Golgi and an electron microscopy study. J Comp Neurol 142:75–107

    Article  PubMed  CAS  Google Scholar 

  29. Massion J (1988) Red nucleus: past and future. Behav Brain Res 28:1–8

    Article  PubMed  CAS  Google Scholar 

  30. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579

    Article  PubMed  Google Scholar 

  31. Snider RS (1950) Recent contributions to the anatomy and physiology of the cerebellum. Arch Neurol Psychiatr 64:196–219

    CAS  Google Scholar 

  32. Xu D, Liu T, Ashe J, Bushara KO (2006) Role of the olivo-cerebellar system in timing. J Neurosci 26:5990–5995

    Article  PubMed  CAS  Google Scholar 

  33. Ramnani N, Behrens TE, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JL et al (2005) The evolution of the prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from Macaque monkeys and humans. Cereb Cortex 16:811–818

    Article  PubMed  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Habas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habas, C., Cabanis, E.A. Cortical projection to the human red nucleus: complementary results with probabilistic tractography at 3 T. Neuroradiology 49, 777–784 (2007). https://doi.org/10.1007/s00234-007-0260-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-007-0260-y

Keywords

Navigation