Skip to main content

Nerve Pathways with MR Tractography

  • Chapter
  • First Online:
High Field Brain MRI

Abstract

Conventional and morphometric magnetic resonance (MR) techniques provide an accurate representation of the brain’s anatomy at a macroscopic scale, but they do not provide information on the topography of white matter bundles. The study of the anisotropic diffusion of water molecules (diffusion tensor imaging; DTI) and tractography (fibre tracking) provide data on white matter microscopic organization and allow the reconstruction of fibre bundles using diffusion-weighted MR images. Since tractography is currently the sole method affording non-invasive study of the 3D architecture of axons in vivo, herein we illustrate the main methods for modelling diffusion-weighted MR images and for performing tractography. Finally, we discuss their enormous potential and current limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis – a technical review. NMR Biomed 15:456–467

    Article  PubMed  Google Scholar 

  2. Basser PJ, Pajevic S, Pierpaoli C et al (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632

    Article  CAS  PubMed  Google Scholar 

  3. Bammer R, Acar B, Moseley ME (2003) In vivo MR tractography using diffusion imaging. Eur J Radiol 45:223–234

    Article  PubMed  Google Scholar 

  4. Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies – a technical review. NMR Biomed 15:468–480

    Article  PubMed  Google Scholar 

  5. Habas C (2004) Basic principles of diffusion tensor MR tractography. J Radiol 85:281–286

    Article  CAS  PubMed  Google Scholar 

  6. Conturo TE, Lori NF, Cull TS et al (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 96:10422–10427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed 15:435–455

    Article  PubMed  Google Scholar 

  8. Moseley ME, Cohen Y, Kucharczyk J et al (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176:439–445

    Article  CAS  PubMed  Google Scholar 

  9. Le Bihan D, Mangin JF, Poupon C et al (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546

    Article  CAS  PubMed  Google Scholar 

  10. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103:247–254

    Article  CAS  PubMed  Google Scholar 

  12. Batchelor PG, Moakher M, Atkinson D et al (2005) A rigorous framework for diffusion tensor calculus. Magn Reson Med 53:221–225

    Article  CAS  PubMed  Google Scholar 

  13. Parker GJ (2004) Analysis of MR diffusion weighted images. Br J Radiol 77 Spec No 2:S176–S185

    Article  CAS  PubMed  Google Scholar 

  14. Lori NF, Akbudak E, Shimony JS et al (2002) Diffusion tensor fiber tracking of human brain connectivity: acquisition methods, reliability analysis and biological results. NMR Biomed 15:494–515

    Article  CAS  PubMed  Google Scholar 

  15. Assaf Y, Freidlin RZ, Rohde GK et al (2004) New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn Reson Med 52:965–978

    Article  PubMed  Google Scholar 

  16. Nagae-Poetscher LM, Jiang H, Wakana S et al (2004) High-resolution diffusion tensor imaging of the brain stem at 3 T. AJNR 25:1325–1330

    PubMed  Google Scholar 

  17. Burdette JH, Elster AD, Ricci PE (1998) Calculation of apparent diffusion coefficients (ADCs) in brain using two-point and six-point methods. J Comput Assist Tomogr 22:792–794

    Article  CAS  PubMed  Google Scholar 

  18. Xing D, Papadakis NG, Huang CL et al (1997) Optimised diffusion weighting for measurement of apparent diffusion coefficient (ADC) in human brain. Magn Reson Imaging 15:771–784

    Article  CAS  PubMed  Google Scholar 

  19. Melhem ER, Mori S, Mukundan G et al (2002) Diffusion tensor MR imaging of the brain and white matter tractography. AJR 178:3–16

    Article  PubMed  Google Scholar 

  20. Descoteaux M, Deriche R, Knösche TR, Anwander A (2009) Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans Med Imaging 28:269–286

    Article  PubMed  Google Scholar 

  21. Jeurissen B, Leemans A, Tournier J-D et al (2012) Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp 34(11):2747–2766

    Article  PubMed  Google Scholar 

  22. Jones DK (2004) The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med 51:807–815

    Article  PubMed  Google Scholar 

  23. Daducci A, Canales-Rodriguez EJ, Descoteaux M et al (2013) Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI. IEEE Trans Med Imaging 33(2):384–399

    Article  PubMed  Google Scholar 

  24. Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    Article  PubMed  Google Scholar 

  25. Setsompop K, Cohen-Adad J, Gagoski BA et al (2012) Improving diffusion MRI using simultaneous multi-slice echo planar imaging. Neuroimage 63(1):569–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Paley MN, Lee KJ, Wild JM et al (2006) Simultaneous parallel inclined readout image technique. Magn Reson Imaging 24:557–562

    Article  PubMed  Google Scholar 

  27. Weaver JB (1988) Simultaneous multislice acquisition of MR images. Magn Reson Med 8:275–284

    Article  CAS  PubMed  Google Scholar 

  28. Feinberg DA, Reese TG, Wedeen VJ (2002) Simultaneous echo refocusing in EPI. Magn Reson Med 48:1–5

    Article  PubMed  Google Scholar 

  29. Reese TG, Benner T, Wang R et al (2009) Halving imaging time of whole brain diffusion spectrum imaging and diffusion tractography using simultaneous image refocusing in EPI. J Magn Reson Imaging 29:517–522

    Article  PubMed  Google Scholar 

  30. Breuer FA, Blaimer M, Heidemann RM et al (2005) Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med 53:684–691

    Article  PubMed  Google Scholar 

  31. Larkman DJ, Hajnal JV, Herlihy AH et al (2001) Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J Magn Reson Imaging 13:313–317

    Article  CAS  PubMed  Google Scholar 

  32. Moeller S, Yacoub E, Olman CA et al (2010) Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn Reson Med 63:1144–1153

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nunes RG, Hajnal JV, Golay X, et al. (2006) Simultaneous slice excitation and reconstruction for single shot EPI. Proceedings of the 14th Annual Meeting of ISMRM, Seattle, p. 293

    Google Scholar 

  34. Setsompop K, Gagoski BA, Polimeni J et al (2012) Blipped-controlled aliasing in parallel imaging (blipped-CAIPI) for simultaneous multi-slice EPI with reduced g-factor penalty. Magn Reson Med 67:1210–1224

    Article  PubMed  Google Scholar 

  35. Xue R, van Zijl PC, Crain BJ et al (1999) In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn Reson Med 42:1123–1127

    Article  CAS  PubMed  Google Scholar 

  36. Mori S, Crain BJ, Chacko VP et al (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269

    Article  CAS  PubMed  Google Scholar 

  37. Parker GJ, Stephan KE, Barker GJ et al (2002) Initial demonstration of in vivo tracing of axonal projections in the macaque brain and comparison with the human brain using diffusion tensor imaging and fast marching tractography. Neuroimage 15:797–809

    Article  PubMed  Google Scholar 

  38. Parker GJ, Wheeler-Kingshott CA, Barker GJ (2002) Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging. IEEE Trans Med Imaging 21:505–512

    Article  PubMed  Google Scholar 

  39. Ciccarelli O, Toosy AT, Parker GJ et al (2003) Diffusion tractography based group mapping of major white-matter pathways in the human brain. Neuroimage 19:1545–1555

    Article  CAS  PubMed  Google Scholar 

  40. Duncan JS, Papademetris X, Yang J et al (2004) Geometric strategies for neuroanatomic analysis from MRI. Neuroimage 23(1):S34–S45

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wu YC, Field AS, Chung MK et al (2004) Quantitative analysis of diffusion tensor orientation: theoretical framework. Magn Reson Med 52:1146–1155

    Article  CAS  PubMed  Google Scholar 

  42. Parker GJ, Alexander DC (2003) Probabilistic Monte Carlo based mapping of cerebral connections utilising whole-brain crossing fibre information. Inf Process Med Imaging 18:684–695

    Article  PubMed  Google Scholar 

  43. Parker GJ, Haroon HA, Wheeler-Kingshott CA (2003) A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J Magn Reson Imaging 18:242–254

    Article  PubMed  Google Scholar 

  44. Behrens TE, Woolrich MW, Jenkinson M et al (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50:1077–1088

    Article  CAS  PubMed  Google Scholar 

  45. Behrens TE, Berg HJ, Jbabdi S et al (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34(1):144–155

    Article  CAS  PubMed  Google Scholar 

  46. Filippi M, van den Heuvel MP, Fornito A et al (2013) Assessment of system dysfunction in the brain through MRI-based connectomics. Lancet Neurol 12:1189–1199

    Article  PubMed  Google Scholar 

  47. de Schotten MT, Ffytche DH, Bizzi A et al (2011) Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. Neuroimage 54(1):49–59

    Article  Google Scholar 

  48. Hagmann P (2005) From diffusion MRI to brain connectomics. Signal Processing Institute. Ecole Polytechnique Fédérale de Lausanne (EPFL). Lausanne, p 127. doi:10.5075/epfl-thesis-3230

  49. Sporns O, Tononi G, Kotter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1:e42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198

    Article  CAS  PubMed  Google Scholar 

  51. Wen W, Zhu WL, He Y et al (2011) Discrete neuroanatomical networks are associated with specific cognitive abilities in old age. J Neurosci 31(4):1204–1212

    Article  CAS  PubMed  Google Scholar 

  52. Bernhardt BC, Bonilha L, Gross DW (2015) Network analysis for a network disorder: the emerging role of graph theory in the study of epilepsy. Epilepsy Behav 50:162–170

    Article  PubMed  Google Scholar 

  53. Griffa A, Baumann PS, Thiran J-P et al (2013) Structural connectomics in brain diseases. Neuroimage 80:515–526

    Article  PubMed  Google Scholar 

  54. Korgaonkar MS, Fornito A, Williams LM et al (2014) Abnormal structural networks characterize major depressive disorder: a connectome analysis. Biol Psychiatry 76:567–574

    Article  PubMed  Google Scholar 

  55. Phillips DJ, McGlaughlin A, Ruth D et al (2015) Graph theoretic analysis of structural connectivity across the spectrum of Alzheimer’s disease: the importance of graph creation methods. NeuroImage Clin 7:377–390

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jones DK, Basser PJ (2004) “Squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted MR data. Magn Reson Med 52:979–993

    Article  PubMed  Google Scholar 

  57. Jones DK (2003) Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI. Magn Reson Med 49:7–12

    Article  PubMed  Google Scholar 

  58. Anderson AW (2001) Theoretical analysis of the effects of noise on diffusion tensor imaging. Magn Reson Med 46:1174–1188

    Article  CAS  PubMed  Google Scholar 

  59. Lazar M, Weinstein DM, Tsuruda JS et al (2003) White matter tractography using diffusion tensor deflection. Hum Brain Mapp 18:306–321

    Article  PubMed  Google Scholar 

  60. Huang H, Zhang J, van Zijl PC et al (2004) Analysis of noise effects on DTI-based tractography using the brute-force and multi-ROI approach. Magn Reson Med 52:559–565

    Article  PubMed  Google Scholar 

  61. Heim S, Hahn K, Samann PG et al (2004) Assessing DTI data quality using bootstrap analysis. Magn Reson Med 52:582–589

    Article  CAS  PubMed  Google Scholar 

  62. Alexander AL, Hasan KM, Lazar M et al (2001) Analysis of partial volume effects in diffusion-tensor MRI. Magn Reson Med 45:770–780

    Article  CAS  PubMed  Google Scholar 

  63. Barrick TR, Clark CA (2004) Singularities in diffusion tensor fields and their relevance in white matter fiber tractography. Neuroimage 22:481–491

    Article  PubMed  Google Scholar 

  64. Wedeen VJ, Hagmann P, Tseng WYI et al (2005) Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54:1377–1386

    Article  PubMed  Google Scholar 

  65. Tuch DS (2004) Q-ball imaging. Magn Reson Med 52:1358–1372

    Article  PubMed  Google Scholar 

  66. Tristán-Vega A, Westin C-F, Aja-Fernández S (2009) Estimation of fiber orientation density probability density functions in high angular resolution diffusion imaging. Neuroimage 47:638–650

    Article  PubMed  Google Scholar 

  67. Aganj I, Lenglet C, Sapiro E et al (2010) Reconstruction of the orientation distribution function in single and multiple shell q-ball imaging with constant solid angle. Magn Reson Med 64:554–566

    PubMed  PubMed Central  Google Scholar 

  68. Liu C, Bammer R, Acar B et al (2004) Characterizing non-Gaussian diffusion by using generalized diffusion tensors. Magn Reson Med 51:924–937

    Article  PubMed  Google Scholar 

  69. Assaf Y, Basser P (2005) Composite hindered and restricted model of diffusion (charmed) MR imaging of the human brain. Neuroimage 27:48–58

    Article  PubMed  Google Scholar 

  70. Tournier JD, Calamante F, Gadian DG et al (2004) Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23:1176–1185

    Article  PubMed  Google Scholar 

  71. Alexander DC, (2005) Maximum entropy spherical deconvolution for diffusion MRI. In: Christensen GE, Soka M (eds) Information processing in medical imaging, proceedings, pp 76–87

    Google Scholar 

  72. Dell’Acqua F, Scifo P, Rizzo G et al (2010) A modified damped Richardson–Lucy algorithm to reduce isotropic background effects in spherical deconvolution. Neuroimage 49:1446–1458

    Article  PubMed  Google Scholar 

  73. Kaden E, Knösche TR, Anwander A (2007) Parametric spherical deconvolution: inferring anatomical connectivity using diffusion MR imaging. Neuroimage 37:474–488

    Article  PubMed  Google Scholar 

  74. Patel V, Shi Y, Thompson PM et al (2010) Mesh-based spherical deconvolution: a flexible approach to reconstruction of non-negative fiber orientation distributions. Neuroimage 51:1071–1081

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mori H, Masutani Y, Aoki S et al (2003) Simple visualization of the corticospinal pathway using tractography: one-ROI and two-ROI methods. Nippon Igaku Hoshasen Gakkai Zasshi 63:51–53

    PubMed  Google Scholar 

  76. Ciccarelli O, Parker GJ, Toosy AT et al (2003) From diffusion tractography to quantitative white matter tract measures: a reproducibility study. Neuroimage 18:348–359

    Article  CAS  PubMed  Google Scholar 

  77. Catani M, Jones DK, Donato R et al (2003) Occipito-temporal connections in the human brain. Brain 126:2093–2107

    Article  PubMed  Google Scholar 

  78. Holodny AI, Gor DM, Watts R et al (2005) Diffusion-tensor MR tractography of somatotopic organization of corticospinal tracts in the internal capsule: initial anatomic results in contradistinction to prior reports. Radiology 234:649–653

    Article  PubMed  Google Scholar 

  79. Lemkaddem A, Daducci A, Vulliemoz S et al (2012) A multi-center study: intra-scan and inter-scan variability of diffusion spectrum imaging. Neuroimage 62(1):87–94

    Article  CAS  PubMed  Google Scholar 

  80. Jack CR, Bernstein MA, Fox NC et al (2008) The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging JMRI 27(4):685–691

    Article  PubMed  Google Scholar 

  81. Marek K, Jennings D, Lasch S et al (2011) The Parkinson Progression Marker Initiative (PPMI). Prog Neurobiol 95(4):629–635

    Article  Google Scholar 

  82. Oppenheim C, Rodrigo S, Poupon C et al (2004) Diffusion tensor MR imaging of the brain. Clinical applications. J Radiol 85:287–296

    Article  CAS  PubMed  Google Scholar 

  83. Sundgren PC, Dong Q, Gomez-Hassan D et al (2004) Diffusion tensor imaging of the brain: review of clinical applications. Neuroradiology 46:339–350

    Article  CAS  PubMed  Google Scholar 

  84. Lehericy S, Ducros M, Van de Moortele PF et al (2004) Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol 55:522–529

    Article  PubMed  Google Scholar 

  85. Rose SE, Chen F, Chalk JB et al (2000) Loss of connectivity in Alzheimer’s disease: an evaluation of white matter tract integrity with colour coded MR diffusion tensor imaging. J Neurol Neurosurg Psychiatry 69:528–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bozzali M, Franceschi M, Falini A et al (2001) Quantification of tissue damage in AD using diffusion tensor and magnetization transfer MRI. Neurology 57:1135–1137

    Article  CAS  PubMed  Google Scholar 

  87. Bozzali M, Falini A, Franceschi M et al (2002) White matter damage in Alzheimer’s disease assessed in vivo using diffusion tensor magnetic resonance imaging. J Neurol Neurosurg Psychiatry 72:742–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Horsfield MA, Jones DK (2002) Applications of diffusion weighted and diffusion tensor MRI to white matter diseases – a review. NMR Biomed 15:570–577

    Article  PubMed  Google Scholar 

  89. Larsson EM, Englund E, Sjobeck M et al (2004) MRI with diffusion tensor imaging post-mortem at 3.0 T in a patient with frontotemporal dementia. Dement Geriatr Cogn Disord 17:316–319

    Article  PubMed  Google Scholar 

  90. Sugihara S, Kinoshita T, Matsusue E et al (2004) Usefulness of diffusion tensor imaging of white matter in Alzheimer disease and vascular dementia. Acta Radiol 45:658–663

    Article  CAS  PubMed  Google Scholar 

  91. Sun Y, Du XK, Zhang ZX et al (2004) Relationship between the data from MR-diffusion tensor imaging and the clinical cognitive evaluation in Alzheimer’s disease. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 26:134–138

    PubMed  Google Scholar 

  92. Yoshida T, Shiga K, Yoshikawa K et al (2004) White matter loss in the splenium of the corpus callosum in a case of posterior cortical atrophy: a diffusion tensor imaging study. Eur Neurol 52:77–81

    Article  PubMed  Google Scholar 

  93. Sullivan EV, Pfefferbaum A (2003) Diffusion tensor imaging in normal aging and neuropsychiatric disorders. Eur J Radiol 45:244–255

    Article  PubMed  Google Scholar 

  94. Phillips O, Sanchez-Castaneda C, Elifani F et al (2013) Tractography of the corpus callosum in Huntington’s disease. PLoS One 8:1–9

    Google Scholar 

  95. Phillips O, Squitieri F, Sanchez-Castaneda C et al (2014) Deep white matter in Huntington’s disease. PLoS One 23(9):10

    Google Scholar 

  96. Phillips O, Squitieri F, Sanchez-Castaneda C et al (2015) The cortispinal tract in Huntington's disease. Cereb Cortex 25(9):2670–2682

    Article  CAS  PubMed  Google Scholar 

  97. Rovaris M, Gallo A, Valsasina P et al (2005) Short-term accrual of gray matter pathology in patients with progressive multiple sclerosis: an in vivo study using diffusion tensor MRI. Neuroimage 24:1139–1146

    Article  PubMed  Google Scholar 

  98. Hong YH, Lee KW, Sung JJ et al (2004) Diffusion tensor MRI as a diagnostic tool of upper motor neuron involvement in amyotrophic lateral sclerosis. J Neurol Sci 227:73–78

    Article  PubMed  Google Scholar 

  99. Yin H, Lim CC, Ma L et al (2004) Combined MR spectroscopic imaging and diffusion tensor MRI visualizes corticospinal tract degeneration in amyotrophic lateral sclerosis. J Neurol 251:1249–1254

    Article  PubMed  Google Scholar 

  100. Abe O, Yamada H, Masutani Y et al (2004) Amyotrophic lateral sclerosis: diffusion tensor tractography and voxel-based analysis. NMR Biomed 17:411–416

    Article  PubMed  Google Scholar 

  101. Cassol E, Ranjeva JP, Ibarrola D et al (2004) Diffusion tensor imaging in multiple sclerosis: a tool for monitoring changes in normal-appearing white matter. Mult Scler 10:188–196

    Article  PubMed  Google Scholar 

  102. Ulug AM, Grunewald T, Lin MT et al (2004) Diffusion tensor imaging in the diagnosis of primary lateral sclerosis. J Magn Reson Imaging 19:34–39

    Article  PubMed  Google Scholar 

  103. Rashid W, Hadjiprocopis A, Griffin CM et al (2004) Diffusion tensor imaging of early relapsing-remitting multiple sclerosis with histogram analysis using automated segmentation and brain volume correction. Mult Scler 10:9–15

    Article  CAS  PubMed  Google Scholar 

  104. Sach M, Winkler G, Glauche V et al (2004) Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain 127:340–350

    Article  PubMed  Google Scholar 

  105. Ciccarelli O, Werring DJ, Barker GJ et al (2003) A study of the mechanisms of normal-appearing white matter damage in multiple sclerosis using diffusion tensor imaging – evidence of Wallerian degeneration. J Neurol 250:287–292

    Article  PubMed  Google Scholar 

  106. Cercignani M, Bozzali M, Iannucci G et al (2002) Intravoxel and inter-voxel coherence in patients with multiple sclerosis assessed using diffusion tensor MRI. J Neurol 249:875–883

    Article  CAS  PubMed  Google Scholar 

  107. Tench CR, Morgan PS, Wilson M et al (2002) White matter mapping using diffusion tensor MRI. Magn Reson Med 47:967–972

    Article  CAS  PubMed  Google Scholar 

  108. Guo AC, MacFall JR, Provenzale JM (2002) Multiple sclerosis: diffusion tensor MR imaging for evaluation of normal appearing white matter. Radiology 222:729–736

    Article  PubMed  Google Scholar 

  109. Filippi M, Rocca MA, Falini A et al (2002) Correlations between structural CNS damage and functional MRI changes in primary progressive MS. Neuroimage 15:537–546

    Article  CAS  PubMed  Google Scholar 

  110. Assaf Y, Ben-Bashat D, Chapman J et al (2002) High b-value q-space analyzed diffusion-weighted MRI: application to multiple sclerosis. Magn Reson Med 47:115–126

    Article  CAS  PubMed  Google Scholar 

  111. Horsfield MA, Larsson HB, Jones DK et al (1998) Diffusion magnetic resonance imaging in multiple sclerosis. J Neurol Neurosurg Psychiatry 64(1):S80–S84

    PubMed  Google Scholar 

  112. Castriota-Scanderbeg A, Tomaiuolo F, Sabatini U et al (2000) Demyelinating plaques in relapsing-remitting and secondary-progressive multiple sclerosis: assessment with diffusion MR imaging. AJNR 21:862–868

    CAS  PubMed  Google Scholar 

  113. Nimsky C, Ganslandt O, Hastreiter P et al (2005) Intraoperative diffusion-tensor MR imaging: shifting of white matter tracts during neurosurgical procedures – initial experience. Radiology 234:218–225

    Article  PubMed  Google Scholar 

  114. Wu JS, Zhou LF, Hong XN et al (2003) Role of diffusion tensor imaging in neuronavigation surgery of brain tumors involving pyramidal tracts. Zhonghua Wai Ke Za Zhi 41:662–666

    PubMed  Google Scholar 

  115. Clark CA, Barrick TR, Murphy MM et al (2003) White matter fiber tracking in patients with space-occupying lesions of the brain: a new technique for neurosurgical planning? Neuroimage 20:1601–1608

    Article  PubMed  Google Scholar 

  116. Akai H, Mori H, Aoki S et al (2005) Diffusion tensor tractography of gliomatosis cerebri: fiber tracking through the tumor. J Comput Assist Tomogr 29:127–129

    Article  PubMed  Google Scholar 

  117. Nimsky C, Ganslandt O, Hastreiter P et al (2005) Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery 56:130–138

    Article  PubMed  Google Scholar 

  118. Parmar H, Sitoh YY, Yeo TT (2004) Combined magnetic resonance tractography and functional magnetic resonance imaging in evaluation of brain tumors involving the motor system. J Comput Assist Tomogr 28:551–556

    Article  PubMed  Google Scholar 

  119. Kier EL, Staib LH, Davis LM et al (2004) MR imaging of the temporal stem: anatomic dissection tractography of the uncinate fasciculus, inferior occipitofrontal fasciculus, and Meyer’s loop of the optic radiation. AJNR 25:677–691

    PubMed  Google Scholar 

  120. Barboriak DP (2003) Imaging of brain tumors with diffusion-weighted and diffusion tensor MR imaging. Magn Reson Imaging Clin N Am 11:379–401

    Article  PubMed  Google Scholar 

  121. Guye M, Parker GJ, Symms M et al (2003) Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo. Neuroimage 19:1349–1360

    Article  PubMed  Google Scholar 

  122. Holodny AI, Ollenschlager M (2002) Diffusion imaging in brain tumors. Neuroimaging Clin N Am 12:107–124

    Article  PubMed  Google Scholar 

  123. Holodny AI, Schwartz TH, Ollenschleger M et al (2001) Tumor involvement of the corticospinal tract: diffusion magnetic resonance tractography with intraoperative correlation. J Neurosurg 95:1082

    Article  CAS  PubMed  Google Scholar 

  124. Leh SE, Ptito A, Chakravarty MM et al (2007) Fronto-striatal connections in the human brain: a probabilistic diffusion tractography study. Neurosci Lett 419:113–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sharman M, Valabregue R, Perlbarg V et al (2013) Parkinson's disease patients show reduced cortical-subcortical sensorimotor connectivity. Mov Disord 28(4):447–454

    Article  CAS  PubMed  Google Scholar 

  126. Le TH, Mukherjee P, Henry RG et al (2005) Diffusion tensor imaging with three-dimensional fiber tractography of traumatic axonal shearing injury: an imaging correlate for the posterior callosal “disconnection” syndrome: case report. Neurosurgery 56:189

    Article  PubMed  Google Scholar 

  127. Naganawa S, Sato C, Ishihra S et al (2004) Serial evaluation of diffusion tensor brain fiber tracking in a patient with severe diffuse axonal injury. AJNR 25:1553–1556

    PubMed  Google Scholar 

  128. Huisman TA, Schwamm LH, Schaefer PW et al (2004) Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. AJNR 25:370–376

    PubMed  Google Scholar 

  129. Huisman TA, Sorensen AG, Hergan K et al (2003) Diffusion-weighted imaging for the evaluation of diffuse axonal injury in closed head injury. J Comput Assist Tomogr 27:5–11

    Article  PubMed  Google Scholar 

  130. Arfanakis K, Haughton VM, Carew JD et al (2002) Diffusion tensor MR imaging in diffuse axonal injury. AJNR 23:794–802

    PubMed  Google Scholar 

  131. Konishi J, Yamada K, Kizu O et al (2005) MR tractography for the evaluation of functional recovery from lenticulostriate infarcts. Neurology 64:108–113

    Article  CAS  PubMed  Google Scholar 

  132. Yamada K, Ito H, Nakamura H et al (2004) Stroke patients’ evolving symptoms assessed by tractography. J Magn Reson Imaging 20:923–929

    Article  PubMed  Google Scholar 

  133. Munoz Maniega S, Bastin ME, Armitage PA et al (2004) Temporal evolution of water diffusion parameters is different in grey and white matter in human ischaemic stroke. J Neurol Neurosurg Psychiatry 75:1714–1718

    Article  CAS  PubMed  Google Scholar 

  134. Thomalla G, Glauche V, Koch MA et al (2004) Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke. Neuroimage 22:1767–1774

    Article  PubMed  Google Scholar 

  135. Huisman TA (2003) Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma. Eur Radiol 13:2283–2297

    Article  PubMed  Google Scholar 

  136. Kunimatsu A, Aoki S, Masutani Y et al (2003) Three-dimensional white matter tractography by diffusion tensor imaging in ischaemic stroke involving the corticospinal tract. Neuroradiology 45:532–535

    Article  CAS  PubMed  Google Scholar 

  137. Sotak CH (2002) The role of diffusion tensor imaging in the evaluation of ischemic brain injury – a review. NMR Biomed 15:561–569

    Article  PubMed  Google Scholar 

  138. Huisman TA, Hawighorst H, Benoit CH et al (2001) Diffusion weighted MRI: ischemic and traumatic injuries of the central nervous system. Radiologe 41:1038–1047

    Article  CAS  PubMed  Google Scholar 

  139. Johansen-Berg H, Behrens TE, Sillery E et al (2005) Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. Cereb Cortex 15:31–39

    Article  PubMed  Google Scholar 

  140. Toosy AT, Ciccarelli O, Parker GJ et al (2004) Characterizing function-structure relationships in the human visual system with functional MRI and diffusion tensor imaging. Neuroimage 21:1452–1463

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Sabatini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Caligiuri, M.E., Cherubini, A., Cosentino, C., Amato, F., Scarabino, T., Sabatini, U. (2017). Nerve Pathways with MR Tractography. In: Scarabino, T., Pollice, S., Popolizio, T. (eds) High Field Brain MRI. Springer, Cham. https://doi.org/10.1007/978-3-319-44174-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44174-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44173-3

  • Online ISBN: 978-3-319-44174-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics