Skip to main content
Log in

Transport of Free Fatty Acids from Plasma to the Endothelium of Cardiac Muscle: A Theoretical Study

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Fatty acids are transported in a multistep process from the plasma to the mitochondria, where they are oxidized in order to meet energy requirements of the myocardium. Some of those steps, mainly the crossing of the involved cells’ membranes are far from being understood. Here, by means of mathematical modeling we address the problem of the fatty acid transport from the microvascular compartment to the endothelium. Values of parameters that are incorporated in the model are deduced from relevant experimental work. Concentration profiles are established as solutions of diffusion–reaction equations both numerically and using an analytical asymptotic approximation. The analytical solution accurately determines the fatty acid flux for any set of parameter values in contrast to off-the-shelf numerical solvers that fail under quite a few circumstances due to the stiffness of the differential equation system. Sensitivity analysis indicates that in spite of few uncertain parameter values, most of our conclusions are expected to be valid throughout the physiological range of operation. We find that in order to have an adequate fatty acid uptake rate it is essential for the luminal endothelial membrane to have very fast fatty acid transporters and/or specific sites that interact with the albumin-fatty acids complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barta E, Sideman S, Bassingthwaighte JB (2000) Facilitated diffusion and membrane permeation of fatty acid in albumin solutions. Ann Biomed Eng 28:331–345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bassingthwaighte JB, Yipintsoi T, Harvey RB (1974) Microvasculature of the dog left ventricular myocardium. Microvasc Res 7(2):229–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bassingthwaighte JB, Wang CY, Chan IS (1989a) Blood-tissue exchange via transport and transformation by capillary endothelial cells. Circ Res 65:997–1020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bassingthwaighte JB, Noodleman L, van der Vusse GJ, Glatz JFC (1989b) Modeling of palmitate transport in the heart. Mol Cell Biochem 88:51–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bonen A, Chabowski A, Luiken JJFP, Glatz JFC (2007) Mechanisms and regulation of protein-mediated cellular fatty acid uptake: molecular, biochemical and physiological evidence. Physiology 22:15–28

    CAS  PubMed  Google Scholar 

  • Burczynski FJ, Cai ZS (1994) Palmitate uptake by hepatocyte suspension: effect of albumin. Am J Physiol 268:G371–G379

    Google Scholar 

  • Carley AN, Kleinfeld AM (2011) Fatty acids (FFA) transport in cardiomyocytes revealed by imaging unbound FFA is mediated by an FFA pump modulated by the CD36 protein. J Biol Chem 286(6):4589–4597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Demant EJ, Richeri GV, Kleinfeld AM (2002) Stopped-flow kinetic analysis of long-chain fatty acid dissociation from bovine serum albumin. Biochem J 363:809–815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghitescu L, Fixman A, Simionescu M, Simionescu N (1986) Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J Cell Biol 102:1304–1311

    Article  CAS  PubMed  Google Scholar 

  • Gilbert M, Basile S, Baudelin A, Pere MC (1993) Lowering plasma free fatty acid levels improves insulin action in conscious pregnant rabbits. Am J Physiol 264(Endo Met 27):E576–E582

    CAS  PubMed  Google Scholar 

  • Glatz JFC, Luiken JJFP, Bonen A (2010) Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev 90:367–417

    Article  CAS  PubMed  Google Scholar 

  • Goldberg IJ, Bornfeldt KE (2013) Lipids and the endothelium: bidirectional interactions. Curr Atheroscler Rep 15(11):365–376

    Article  PubMed  Google Scholar 

  • Goodman DS (1958) The interaction of human serum albumin with long-chain fatty acid anions. J Am Chem Soc 80:3892–3898

    Article  CAS  Google Scholar 

  • Goresky CA, Stremmel W, Rose CP, Guirguis S, Schwab AJ, Diede HE, Ibrahim E (1994) The capillary transport system for free fatty acids in the heart. Circ Res 74:1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Hagberg C, Mehlem A, Falkevall A, Muhl L, Eriksson U (2013) Endothelial fatty acid transport: role of vascular endothelial growth factor B. Physiology 28:125–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hamilton JA (2007) New insights into the roles of proteins and lipids in membrane transport of fatty acids. Prostaglandins Leukot Essent Fat Acids 77:355–361

    Article  CAS  Google Scholar 

  • Hamilton JA, Kamp F (1999) How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids? Diabetes 48:2255–2269

    Article  CAS  PubMed  Google Scholar 

  • Holmes MH (1995) Introduction to perturbation methods. Springer, New York

    Book  Google Scholar 

  • Hui Y, Bernlohr DA (1997) Fatty acids transporters in animal cells. Front Biosci 2:222–231

    Google Scholar 

  • Hutter JF, Piper HM, Spieckermann PG (1984) Myocardial fatty acid oxidation: evidence for an albumin-receptor-mediated membrane of fatty acids. Basic Res Card 79(3):274–282

    Article  CAS  Google Scholar 

  • Ijzerman RG, Stehouwer CD, Serne EH, Voordouw JJ, Smulders YM, Delemarre-van de Waal HA, Weissenbruch MM (2009) Incorporation of the fasting free fatty acid concentration into quantitative insulin sensitivity check index improves its association with insulin sensitivity in adults, but not in children. Eur J Endocrinol 160(1):59–64

    Article  CAS  PubMed  Google Scholar 

  • Iso T, Maeda K, Hanaoka H, Suga T, Goto K et al (2013) Capillary endothelial fatty acid binding proteins 4 and 5 play a critical role in fatty acid uptake in heart and skeletal muscle. Arterioscler Thromb Vasc Biol 33:2549–2557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamp F, Hamilton JA (2006) How fatty acids of different chain length enter and leave cells by free diffusion. Prostaglandins Leukot Essent Fat Acids 75(3):149–159

    Article  CAS  Google Scholar 

  • Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90(1):207–258

    Article  CAS  PubMed  Google Scholar 

  • Musters MWJM, Bassingthwaighte JB, van Riel NAW, van der Vusse GJ (2006) Computational evidence for protein-mediated fatty acid transport across the sarcolemma. Biochem J 393:669–678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Potter BL, Sorrentino D, Berk PD (1989) Mechanisms of cellular uptake of free fatty acids. Annu Rev Nutr 9:253–270

    Article  CAS  PubMed  Google Scholar 

  • Raj T, Flygare WH (1974) Diffusion studies of bovine serum albumin by quasielastic scattering. Biochemistry 13(16):3336–3340

    Article  CAS  PubMed  Google Scholar 

  • Reed R, Burrington CM (1989) The albumin receptor effect may be due to a surface-induced conformational change in albumin. J Biol Chem 264(17):9867–9872

    CAS  PubMed  Google Scholar 

  • Richeri GV, Kleinfeld AM (1995) Unbound free fatty acid levels in human serum. J Lipid Res 36:229–240

    Google Scholar 

  • Richeri GV, Anel A, Kleinfeld AM (1993) Interactions of long-chain fatty acids and albumin: determination of free fatty acid levels using the flurescent probe ADIFAB. Biochem 32:7574–7580

    Article  Google Scholar 

  • Saifer A, Goldman L (1961) The free fatty acids bound to human serum albumin. J Lipid Res 2:268–270

    CAS  Google Scholar 

  • Simionescu M, Ghitescu L, Fixman A, Simionescu N (1987) How plasma macromolecules cross the endothelium. News Physiol Sci 2:97–100

    CAS  Google Scholar 

  • Smits G (1976) Measurement of the diffusion coefficient of free fatty acid in groundnut oil by the capillary-cell method. J Am Oil Chem Soc 53(4):122–124

    Article  CAS  Google Scholar 

  • Sorrentino D, Stump D, Potter BJ, Robinson RB, White R, Kiang CL, Berk PD (1988) Oleate uptake by cardiac myocotes is carrier mediated and involves a 40-kD plasma membrane fatty acid binding protein similar to that in liver, adipose tissue, and gut. J Clin Invest 89:928–935

    Article  Google Scholar 

  • Stremmel W (1987) Fatty acid uptake by isolated rat heart myocytes represents a carrier-mediated transport process. J Clin Invest 81:844–852

    Article  Google Scholar 

  • Trigatti BL, Gerber GE (1995) A direct role for serum albumin in the cellular uptake of long-chain fatty acids. Biochem J 308:155–159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van der Vusse GJ (2009) Albumin as fatty acid transporter. Drug Metab Pharmacokinet 24(4):300–307

    Article  PubMed  Google Scholar 

  • Van der Vusse GJ, Glatz JFC, Stam HCG, Reneman RS (1992) Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 72(4):881–940

    Google Scholar 

  • Van der Vusse GJ, van Bilsen M, Glatz JFC (2000) Cardiac fatty acid uptake and transport in health and disease. Cardio Vasc Res 45:279–293

    Article  Google Scholar 

  • Vyska K, Meyer W, Stremmel W, Notohamiprodjo G, Minami K, Machulla H, Gleichmann U, Meyer H, Korfer R (1991) Fatty acid uptake in normal human myocardium. Circ Res 69:857–870

    Article  CAS  PubMed  Google Scholar 

  • Weisiger RA (1993) The role of albumin binding in hepatic organic anion transport. In: Tavoloni N, Berk PD (eds) Hepatic transport and bile secretion: physiology and pathophysiology. Raven, New York, pp 171–196

    Google Scholar 

  • Zhou L, Vessby B, Nilsson A (2002) Quantitative role of plasma free fatty acids in the supply of arachidonic acid to extrahepatic tissues in rats. J Nutr 132:2626–2631

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is indebted to Prof. J. B. Bassingthwaighte for introducing this fascinating subject to her and for many years of stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efrath Barta.

Appendix

Appendix

The four independent variables of the differential system of equations, Eqs. 912, have two typical profiles: C F is characterized by a moderate linear slope followed by a steep decline within a boundary layer near the membrane while the proteins are characterized by a linear slope followed by a much thinner boundary layer where they hardly change. This difference between the profiles is due to the different values of the diffusion constant of the two “species” and (mainly) due to the different boundary conditions imposed at the membrane (the fatty acids are evacuated but the proteins are confined within the region). Accordingly, establishing a solution using a singular perturbation approach necessitates expressing the variables near the membrane as series with two scaled coordinates (for the two types of boundary layers) and a solution of four simultaneous equations for each term that appear in each series. These formalistic steps mean a most formidable task. Instead, we expressed the protein concentrations by uniformly valid functional forms, Eqs. 1315, that satisfy all boundary conditions and the differential equations after nullifying their left-hand sides. Any series that includes a deviation of ɛ(y − y n/n), n > 1 from the plasma concentrations will do for this purpose. Choosing n = 2 involves constant and minimal 2nd derivatives (and errors). Outside the boundary layer the differential equations are satisfied up to O(D A ɛ/x 21 ). Inside the boundary layer the inaccuracy is a bit higher. This approach induces normalized concentrations that differ at the membrane by less than one percent from the numerically computated ones for our range of parameter values.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barta, E. Transport of Free Fatty Acids from Plasma to the Endothelium of Cardiac Muscle: A Theoretical Study. J Membrane Biol 248, 783–793 (2015). https://doi.org/10.1007/s00232-015-9795-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-015-9795-8

Keywords

Navigation