Skip to main content

Advertisement

Log in

Lipids and the Endothelium: Bidirectional Interactions

  • Clinical Trials and Their Interpretations (J Plutzky, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

The endothelium is often viewed solely as the barrier that prevents the penetration of circulating lipoproteins into the arterial wall. However, recent research has demonstrated that the endothelium has an important part in regulating circulating fatty acids and lipoproteins, and is in turn affected by these lipids/lipoproteins in ways that appear to have important repercussions for atherosclerosis. Thus, a number of potentially toxic lipids are produced during lipolysis of lipoproteins at the endothelial cell surface. Catabolism of triglyceride-rich lipoproteins creates free fatty acids that are readily taken up by endothelial cells, and, likely through the action of acyl-CoA synthetases, exacerbate inflammatory processes. In this article, we review how the endothelium participates in lipoprotein metabolism, how lipids alter endothelial functions, and how lipids are internalized, processed, and transported into the subendothelial space. Finally, we address the many endothelial changes that might promote atherogenesis, especially in the setting of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22.

    Article  Google Scholar 

  2. Cornier MA, Dabelea D, Hernandez TL, et al. The metabolic syndrome. Endocr Rev. 2008;29(7):777–822.

    Article  PubMed  CAS  Google Scholar 

  3. Renard CB, Kramer F, Johansson F, et al. Diabetes and diabetes-associated lipid abnormalities have distinct effects on initiation and progression of atherosclerotic lesions. J Clin Invest. 2004;114(5):659–68.

    PubMed  CAS  Google Scholar 

  4. Vikramadithyan RK, Hu Y, Noh HL, et al. Human aldose reductase expression accelerates diabetic atherosclerosis in transgenic mice. J Clin Invest. 2005;115(9):2434–43.

    Article  PubMed  CAS  Google Scholar 

  5. Johansson F, Kramer F, Barnhart S, et al. Type 1 diabetes promotes disruption of advanced atherosclerotic lesions in LDL receptor-deficient mice. Proc Natl Acad Sci U S A. 2008;105(6):2082–7.

    Article  PubMed  CAS  Google Scholar 

  6. •• Nagareddy PR, Murphy AJ, Hewing B, et al. Hyperglycemia enhances myeloid cell proliferation and impairs atherosclerosis regression in diabetes. Cell Metab. 2013;17(5):695–708. This article provides evidence that hyperglycemia contributes to the impaired regression of atherosclerotic lesions associated with diabetes, and that the mechanism is due to glucose stimulation of neutrophils.

    Article  PubMed  CAS  Google Scholar 

  7. Vedantham S, Noh H, Ananthakrishnan R, et al. Human aldose reductase expression accelerates atherosclerosis in diabetic apolipoprotein E−/− mice. Arterioscler Thromb Vasc Biol. 2011;31(8):1805–13.

    Article  PubMed  CAS  Google Scholar 

  8. Ginsberg HN. Lipoprotein physiology in nondiabetic and diabetic states. Relationship to atherogenesis. Diabetes Care. 1991;14(9):839–55.

    Article  PubMed  CAS  Google Scholar 

  9. Miller M, Stone NJ, Ballantyne C, et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2011;123(20):2292–333.

    Article  PubMed  Google Scholar 

  10. Zhang X, Qi R, Xian X, et al. Spontaneous atherosclerosis in aged lipoprotein lipase-deficient mice with severe hypertriglyceridemia on a normal chow diet. Circ Res. 2008;102(2):250–6.

    Article  PubMed  CAS  Google Scholar 

  11. Weinstein MM, Yin L, Tu Y, et al. Chylomicronemia elicits atherosclerosis in mice—brief report. Arterioscler Thromb Vasc Biol. 2009;30(1):20–3.

    Article  PubMed  Google Scholar 

  12. Beigneux AP, Davies BS, Gin P, et al. Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab. 2007;5(4):279–91.

    Article  PubMed  CAS  Google Scholar 

  13. Young SG, Davies BS, Voss CV, et al. GPIHBP1, an endothelial cell transporter for lipoprotein lipase. J Lipid Res. 2011;52(11):1869–84.

    Article  PubMed  CAS  Google Scholar 

  14. Beigneux AP, Franssen R, Bensadoun A, et al. Chylomicronemia with a mutant GPIHBP1 (Q115P) that cannot bind lipoprotein lipase. Arterioscler Thromb Vasc Biol. 2009;29(6):956–62.

    Article  PubMed  CAS  Google Scholar 

  15. Young SG, Zechner R. Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev. 2013;27(5):459–84.

    Article  PubMed  CAS  Google Scholar 

  16. Sonnenburg WK, Yu D, Lee EC, et al. GPIHBP1 stabilizes lipoprotein lipase and prevents its inhibition by angiopoietin-like 3 and angiopoietin-like 4. J Lipid Res. 2009;50(12):2421–9.

    Article  PubMed  CAS  Google Scholar 

  17. Franssen R, Young SG, Peelman F, et al. Chylomicronemia with low postheparin lipoprotein lipase levels in the setting of GPIHBP1 defects. Circ Cardiovasc Genet. 2010;3(2):169–78.

    Article  PubMed  CAS  Google Scholar 

  18. Yagyu H, Lutz EP, Kako Y, et al. Lipoprotein physiology in nondiabetic and diabetic states. Relationship to atherogenesis. J Biol Chem. 2002;277(12):10037–43.

    Article  PubMed  CAS  Google Scholar 

  19. Tacken PJ, Teusink B, Jong MC, et al. LDL receptor deficiency unmasks altered VLDL triglyceride metabolism in VLDL receptor transgenic and knockout mice. J Lipid Res. 2000;41(12):2055–62.

    PubMed  CAS  Google Scholar 

  20. Wang L, Gill R, Pedersen TL, Higgins LJ, Newman JW, Rutledge JC. Triglyceride-rich lipoprotein lipolysis releases neutral and oxidized FFAs that induce endothelial cell inflammation. J Lipid Res. 2009;50(2):204–13.

    Article  PubMed  CAS  Google Scholar 

  21. Kume N, Cybulsky MI, Gimbrone Jr MA. Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest. 1992;90(3):1138–44.

    Article  PubMed  CAS  Google Scholar 

  22. Du X, Edelstein D, Obici S, Higham N, Zou MH, Brownlee M. Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. J Clin Invest. 2006;116(4):1071–80.

    Article  PubMed  CAS  Google Scholar 

  23. Goldberg IJ, Eckel RH, McPherson R. Triglycerides and heart disease: still a hypothesis? Arterioscler Thromb Vasc Biol. 2011;31(8):1716–25.

    Article  PubMed  CAS  Google Scholar 

  24. Ruby MA, Goldenson B, Orasanu G, Johnston TP, Plutzky J, Krauss RM. VLDL hydrolysis by LPL activates PPAR-alpha through generation of unbound fatty acids. J Lipid Res. 2010;51(8):2275–81.

    Article  PubMed  CAS  Google Scholar 

  25. Kanda T, Brown JD, Orasanu G, et al. PPARγ in the endothelium regulates metabolic responses to high-fat diet in mice. J Clin Invest. 2009;119(1):110–24.

    PubMed  CAS  Google Scholar 

  26. Drover VA, Ajmal M, Nassir F, et al. CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood. J Clin Invest. 2005;115(5):1290–7.

    PubMed  CAS  Google Scholar 

  27. Brunzell JD, Hazzard WR, Porte Jr D, Bierman EL. Evidence for a common, saturable, triglyceride removal mechanism for chylomicrons and very low density lipoproteins in man. J Clin Invest. 1973;52(7):1578–85.

    Article  PubMed  CAS  Google Scholar 

  28. Zilversmit DB. Mechanisms of cholesterol accumulation in the arterial wall. Am J Cardiol. 1975;35(4):559–66.

    Article  PubMed  CAS  Google Scholar 

  29. Hirata K, Dichek HL, Cioffi JA, Choi SY, Leeper NJ, Quintana L, et al. Cloning of a unique lipase from endothelial cells extends the lipase gene family. J Biol Chem. 1999;274(20):14170–5.

    Article  PubMed  CAS  Google Scholar 

  30. Jaye M, Lynch KJ, Krawiec J, Marchadier D, Maugeais C, Doan K, et al. A novel endothelial-derived lipase that modulates HDL metabolism. Nat Genet. 1999;21(4):424–8.

    Article  PubMed  CAS  Google Scholar 

  31. Voight BF, Peloso GM, Orho-Melander M, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380(9841):572–80.

    Article  PubMed  CAS  Google Scholar 

  32. Eiselein L, Wilson DW, Lame MW, Rutledge JC. Lipolysis products from triglyceride-rich lipoproteins increase endothelial permeability, perturb zonula occludens-1 and F-actin, and induce apoptosis. Am J Physiol Heart Circ Physiol. 2007;292(6):H2745–53.

    Article  PubMed  CAS  Google Scholar 

  33. Kazantzis M, Stahl A. Fatty acid transport proteins, implications in physiology and disease. Biochim Biophys Acta. 2012;1821(5):852–7.

    Article  PubMed  CAS  Google Scholar 

  34. Bharadwaj KG, Hiyama Y, Hu Y, et al. Chylomicron- and VLDL-derived lipids enter the heart through different pathways: in vivo evidence for receptor- and non-receptor-mediated fatty acid uptake. J Biol Chem. 2010;285(49):37976–86.

    Article  PubMed  CAS  Google Scholar 

  35. Kuda O, Pietka T, Demianova Z, et al. Sulfo-N-succinimidyl oleate (SSO) inhibits fatty acid uptake and signaling for intracellular calcium via binding CD36 lysine 164. SSO also Inhibits oxLDL uptake by macrophages. J Biol Chem. 2013;288(22):15547–55.

    Article  PubMed  CAS  Google Scholar 

  36. •• Hagberg CE, Falkevall A, Wang X, et al. Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature. 2010;464(7290):917–21. This article describes a new mechanism that controls endothelial fatty acid uptake.

    Article  PubMed  CAS  Google Scholar 

  37. Hagberg C, Mehlem A, Falkevall A, Muhl L, Eriksson U. Endothelial fatty acid transport: role of vascular endothelial growth factor B. Physiology (Bethesda). 2013;28(2):125–34.

    Article  CAS  Google Scholar 

  38. Sandoval A, Fraisl P, Arias-Barrau E, et al. Fatty acid transport and activation and the expression patterns of genes involved in fatty acid trafficking. Arch Biochem Biophys. 2008;477(2):363–71.

    Article  PubMed  CAS  Google Scholar 

  39. Black PN, DiRusso CC. Vectorial acylation: linking fatty acid transport and activation to metabolic trafficking. Novartis Found Symp. 2007;286:127–38.

    Article  PubMed  CAS  Google Scholar 

  40. • Li X, Gonzalez O, Shen X, et al. Endothelial acyl-CoA synthetase 1 is not required for inflammatory and apoptotic effects of a saturated fatty acid-rich environment. Arterioscler Thromb Vasc Biol. 2013;33(2):232–40. This study is the first to investigate deletion of an ACSL in endothelial cells.

    Article  PubMed  CAS  Google Scholar 

  41. Krogmann A, Staiger K, Haas C, et al. Inflammatory response of human coronary artery endothelial cells to saturated long-chain fatty acids. Microvasc Res. 2011;81(1):52–9.

    Article  PubMed  CAS  Google Scholar 

  42. Erridge C. Endogenous ligands of TLR2 and TLR4: agonists or assistants? J Leukoc Biol. 2010;87(6):989–99.

    Article  PubMed  CAS  Google Scholar 

  43. Wong SW, Kwon MJ, Choi AM, et al. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J Biol Chem. 2009;284(40):27384–92.

    Article  PubMed  CAS  Google Scholar 

  44. Cheng AM, Handa P, Tateya S, et al. Apolipoprotein A-I attenuates palmitate-mediated NF-κB activation by reducing Toll-like receptor-4 recruitment into lipid rafts. PLoS One. 2012;7(3):e33917.

    Article  PubMed  CAS  Google Scholar 

  45. Listenberger LL, Han X, Lewis SE, et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A. 2003;100(6):3077–82.

    Article  PubMed  CAS  Google Scholar 

  46. Staiger K, Staiger H, Weigert C, et al. Saturated, but not unsaturated, fatty acids induce apoptosis of human coronary artery endothelial cells via nuclear factor-κB activation. Diabetes. 2006;55(11):3121–6.

    Article  PubMed  CAS  Google Scholar 

  47. Peter A, Weigert C, Staiger H, et al. Induction of stearoyl-CoA desaturase protects human arterial endothelial cells against lipotoxicity. Am J Physiol Endocrinol Metab. 2008;295(2):E339–49.

    Article  PubMed  CAS  Google Scholar 

  48. Michelsen KS, Wong MH, Shah PK, et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci U S A. 2004;101(29):10679–84.

    Article  PubMed  CAS  Google Scholar 

  49. Ding Y, Subramanian S, Montes VN, et al. Toll-like receptor 4 deficiency decreases atherosclerosis but does not protect against inflammation in obese low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol. 2012;32(7):1596–604.

    Article  PubMed  CAS  Google Scholar 

  50. Coenen KR, Gruen ML, Lee-Young RS, et al. Impact of macrophage toll-like receptor 4 deficiency on macrophage infiltration into adipose tissue and the artery wall in mice. Diabetologia. 2009;52(2):318–28.

    Article  PubMed  CAS  Google Scholar 

  51. • Chakraborty M, Lou C, Huan C, et al. Myeloid cell-specific serine palmitoyltransferase subunit 2 haploinsufficiency reduces murine atherosclerosis. J Clin Invest. 2013;123(4):1784–97. This study demonstrates that the sphingomyelin pathway contributes in important ways to atherosclerosis in mouse models.

    Article  PubMed  CAS  Google Scholar 

  52. Park TS, Hu Y, Noh HL, et al. Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J Lipid Res. 2008;49(10):2101–12.

    Article  PubMed  CAS  Google Scholar 

  53. Lee SY, Kim JR, Hu Y, et al. Cardiomyocyte specific deficiency of serine palmitoyltransferase subunit 2 reduces ceramide but leads to cardiac dysfunction. J Biol Chem. 2012;287(22):18429–39.

    Article  PubMed  CAS  Google Scholar 

  54. Zhang QJ, Holland WL, Wilson L, et al. Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex. Diabetes. 2012;61(7):1848–59.

    Article  PubMed  CAS  Google Scholar 

  55. •• Tsuchiya K, Tanaka J, Shuiqing Y, et al. FoxOs integrate pleiotropic actions of insulin in vascular endothelium to protect mice from atherosclerosis. Cell Metab. 2012;15(3):372–81. This article provides the first demonstration that endothelial expression of FoxO transcription factors is proatherogenic.

    Article  PubMed  CAS  Google Scholar 

  56. De Caterina R, Massaro M. Omega-3 fatty acids and the regulation of expression of endothelial pro-atherogenic and pro-inflammatory genes. J Membr Biol. 2005;206(2):103–16.

    Article  PubMed  Google Scholar 

  57. Investigators OT, Bosch J, Gerstein HC, et al. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N Engl J Med. 2012;367(4):309–18.

    Article  Google Scholar 

  58. Ellis JM, Frahm JL, Li LO, Coleman RA. Acyl-coenzyme A synthetases in metabolic control. Curr Opin Lipidol. 2010;21(3):212–7.

    Article  PubMed  CAS  Google Scholar 

  59. Ciapaite J, van Bezu J, van Eikenhorst G, et al. Palmitate and oleate have distinct effects on the inflammatory phenotype of human endothelial cells. Biochim Biophys Acta. 2007;1771(2):147–54.

    Article  PubMed  CAS  Google Scholar 

  60. Ellis JM, Li LO, Wu PC, et al. Adipose acyl-CoA synthetase-1 directs fatty acids toward beta-oxidation and is required for cold thermogenesis. Cell Metab. 2010;12(1):53–64.

    Article  PubMed  CAS  Google Scholar 

  61. Kanter JE, Kramer F, Barnhart S, et al. Diabetes promotes an inflammatory macrophage phenotype and atherosclerosis through acyl-CoA synthetase 1. Proc Natl Acad Sci U S A. 2012;109(12):E715–24.

    Article  PubMed  CAS  Google Scholar 

  62. Ellis JM, Mentock SM, Depetrillo MA, et al. Mouse cardiac acyl coenzyme a synthetase 1 deficiency impairs Fatty Acid oxidation and induces cardiac hypertrophy. Mol Cell Biol. 2011;31(6):1252–62.

    Article  PubMed  CAS  Google Scholar 

  63. •• Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364(2):127–35. This work demonstrates that reduced cholesterol efflux capacity of HDL is a better predictor of coronary artery disease than HDL cholesterol.

    Article  PubMed  CAS  Google Scholar 

  64. Umemoto T, Han CY, Mitra P, et al. Apolipoprotein A-I and HDL have anti-inflammatory effects on adipocytes via cholesterol transporters: ATP-binding cassette (ABC) A-1, ABCG-1 and scavenger receptor B-1(SRB-1). Circ Res. 2013;112(10):1345–54.

    Article  PubMed  CAS  Google Scholar 

  65. Wilkerson BA, Grass GD, Wing SB, Argraves WS, Argraves KM. Sphingosine 1-phosphate (S1P) carrier-dependent regulation of endothelial barrier: high density lipoprotein (HDL)-S1P prolongs endothelial barrier enhancement as compared with albumin-S1P via effects on levels, trafficking, and signaling of S1P1. J Biol Chem. 2012;287(53):44645–53.

    Article  PubMed  CAS  Google Scholar 

  66. Terasaka N, Westerterp M, Koetsveld J, et al. ATP-binding cassette transporter G1 and high-density lipoprotein promote endothelial NO synthesis through a decrease in the interaction of caveolin-1 and endothelial NO synthase. Arterioscler Thromb Vasc Biol. 2010;30(11):2219–25.

    Article  PubMed  CAS  Google Scholar 

  67. Cleland SJ. Cardiovascular risk in double diabetes mellitus—when two worlds collide. Nat Rev Endocrinol. 2012;8(8):476–85.

    Article  PubMed  CAS  Google Scholar 

  68. Morgantini C, Natali A, Boldrini B, et al. Anti-inflammatory and antioxidant properties of HDLs are impaired in type 2 diabetes. Diabetes. 2011;60(10):2617–23.

    Article  PubMed  CAS  Google Scholar 

  69. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.

    Article  PubMed  CAS  Google Scholar 

  70. Mueckler M. Facilitative glucose transporters. Eur J Biochem. 1994;219(3):713–25.

    Article  PubMed  CAS  Google Scholar 

  71. Hatley ME, Srinivasan S, Reilly KB, Bolick DT, Hedrick CC. Increased production of 12/15 lipoxygenase eicosanoids accelerates monocyte/endothelial interactions in diabetic db/db mice. J Biol Chem. 2003;278(28):25369–75.

    Article  PubMed  CAS  Google Scholar 

  72. Schmidt AM, Hori O, Chen JX, et al. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest. 1995;96(3):1395–403.

    Article  PubMed  CAS  Google Scholar 

  73. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70.

    Article  PubMed  CAS  Google Scholar 

  74. Gray SP, Di Marco E, Okabe J, et al. NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis. Circulation. 2013;127(18):1888–902.

    Article  PubMed  CAS  Google Scholar 

  75. Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106(8):1319–31.

    Article  PubMed  CAS  Google Scholar 

  76. Rask-Madsen C, Li Q, Freund B, et al. Loss of insulin signaling in vascular endothelial cells accelerates atherosclerosis in apolipoprotein E null mice. Cell Metab. 2010;11(5):379–89.

    Article  PubMed  CAS  Google Scholar 

  77. Galkina EV, Butcher M, Keller SR, et al. Accelerated atherosclerosis in Apoe−/− mice heterozygous for the insulin receptor and the insulin receptor substrate-1. Arterioscler Thromb Vasc Biol. 2012;32(2):247–56.

    Article  PubMed  CAS  Google Scholar 

  78. Du XL, Edelstein D, Rossetti L, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A. 2000;97(22):12222–6.

    Article  PubMed  CAS  Google Scholar 

  79. Garcia Soriano F, Virág L, Jagtap P, et al. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat Med. 2001;7(1):108–13.

    Article  PubMed  CAS  Google Scholar 

  80. Ding H, Hashem M, Wiehler WB, et al. Endothelial dysfunction in the streptozotocin-induced diabetic apoE-deficient mouse. Br J Pharmacol. 2005;146(8):1110–8.

    Article  PubMed  CAS  Google Scholar 

  81. Estrada IA, Donthamsetty R, Debski P, et al. STIM1 restores coronary endothelial function in type 1 diabetic mice. Circ Res. 2012;111(9):1166–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in the authors’ laboratories is supported by National Institutes of Health grants HL062887, HL092969, HL097365, and DK017047 and Novo Nordisk (K.E.B.) and by National Institutes of Health grants HL45095 and HL73029 (I.J.G.).

Conflict of Interest

Ira J. Goldberg and Karin E. Bornfeldt declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin E. Bornfeldt.

Additional information

This article is part of the Topical Collection on Clinical Trials and Their Interpretations

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldberg, I.J., Bornfeldt, K.E. Lipids and the Endothelium: Bidirectional Interactions. Curr Atheroscler Rep 15, 365 (2013). https://doi.org/10.1007/s11883-013-0365-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-013-0365-1

Keywords

Navigation