Skip to main content
Log in

Lipid Converter, A Framework for Lipid Manipulations in Molecular Dynamics Simulations

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Construction of lipid membrane and membrane protein systems for molecular dynamics simulations can be a challenging process. In addition, there are few available tools to extend existing studies by repeating simulations using other force fields and lipid compositions. To facilitate this, we introduce Lipid Converter, a modular Python framework for exchanging force fields and lipid composition in coordinate files obtained from simulations. Force fields and lipids are specified by simple text files, making it easy to introduce support for additional force fields and lipids. The converter produces simulation input files that can be used for structural relaxation of the new membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Berger O, Edholm O, Jähnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002–2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bussi G et al (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    Article  PubMed  Google Scholar 

  • Chiu S-W, Pandit SA, Scott HL, Jakobsson E (2009) An improved united atom force field for simulation of mixed lipid bilayers. J Phys Chem B113:2748–2763

    Article  Google Scholar 

  • da Silva, A. & Vranken, W. F. BMC Research Notes | Full text | ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res notes (2012)

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98:10089–10092

    Article  CAS  Google Scholar 

  • Hess B, Hess B (2008) P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4:116–122

    Article  CAS  Google Scholar 

  • Jämbeck JPM, Lyubartsev AP (2012) Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J Phys Chem B116:3164–3179

    Article  Google Scholar 

  • Jensen MO et al (2012) Mechanism of voltage gating in potassium channels. Science 336:229–233

    Article  CAS  PubMed  Google Scholar 

  • Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865

    Article  CAS  PubMed  Google Scholar 

  • Klauda JB et al (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B114:7830–7843

    Article  Google Scholar 

  • Kukol A (2009) Lipid models for united-atom molecular dynamics simulations of proteins. J Chem Theory Comput 5:615–626

    Article  CAS  Google Scholar 

  • Kucerka N et al (2005) Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys J 88:12

    Google Scholar 

  • Malde AK et al (2011) An automated force field topology builder (ATB) and repository: version 1.0. J Chem Theory Comput 7:4026–4037

    Article  CAS  Google Scholar 

  • Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O (2011) MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J Comput Chem 32:2319–2327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oloo EO, Kandt C, O’Mara ML, Tieleman DP (2006) Computer simulations of ABC transporter components. Biochem Cell Biol 84:900–911

    Article  CAS  PubMed  Google Scholar 

  • Pabst G, Rappolt M, Amenitsch H, Laggner P (2000) Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality x-ray data. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 62:4000–4009

    CAS  PubMed  Google Scholar 

  • Parrinello M (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  • Poger D, Van Gunsteren WF, Mark AE (2010) A new force field for simulating phosphatidylcholine bilayers. J Comput Chem 31:1117–1125

    Article  CAS  PubMed  Google Scholar 

  • Pronk S. et al. (2013) GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. doi:10.1093/bioinformatics/btt055

  • Roux B, Karplus M (1994) Molecular dynamics simulations of the gramicidin channel. Annu Rev Biophys Biomol Struct. 23:731–761

    Article  CAS  PubMed  Google Scholar 

  • Skjevik ÅA, Madej BD, Walker RC, Teigen K (2012) LIPID11: a modular framework for lipid simulations using amber. J Phys Chem B116:11124–11136

    Article  Google Scholar 

  • Ulmschneider JP, Ulmschneider MB (2009) United Atom Lipid Parameters for Combination with the Optimized Potentials for Liquid Simulations All-Atom Force Field—Journal of Chemical Theory and Computation (ACS Publications). J Chem Theory

  • Vanommeslaeghe K, MacKerell AD Jr (2012) Automation of the CHARMM general force field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 52:3144–3154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Matt Eckler for beta-testing Lipid Converter.

Conflict of interest

None declared.

Funding

This work was supported by an European Union fellowship (Marie Curie) PIOF-GA-2010-275548 to PL and NIH Grant RO1GM098304 to PK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Kasson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larsson, P., Kasson, P.M. Lipid Converter, A Framework for Lipid Manipulations in Molecular Dynamics Simulations. J Membrane Biol 247, 1137–1140 (2014). https://doi.org/10.1007/s00232-014-9705-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-014-9705-5

Keywords

Navigation