Skip to main content
Log in

Na+ Recirculation and Isosmotic Transport

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The Na+ recirculation theory for solute-coupled fluid absorption is an expansion of the local osmosis concept introduced by Curran and analyzed by Diamond & Bossert. Based on studies on small intestine the theory assumes that the observed recirculation of Na+ serves regulation of the osmolarity of the absorbate. Mathematical modeling reproducing bioelectric and hydrosmotic properties of small intestine and proximal tubule, respectively, predicts a significant range of observations such as isosmotic transport, hyposmotic transport, solvent drag, anomalous solvent drag, the residual hydraulic permeability in proximal tubule of AQP1 (−/−) mice, and the inverse relationship between hydraulic permeability and the concentration difference needed to reverse transepithelial water flow. The model reproduces the volume responses of cells and lateral intercellular space (lis) following replacement of luminal NaCl by sucrose as well as the linear dependence of volume absorption on luminal NaCl concentration. Analysis of solvent drag on Na+ in tight junctions provides explanation for the surprisingly high metabolic efficiency of Na+ reabsorption. The model predicts and explains low metabolic efficiency in diluted external baths. Hyperosmolarity of lis is governed by the hydraulic permeability of the apical plasma membrane and tight junction with 6–7 mOsm in small intestine and ≤ 1 mOsm in proximal tubule. Truly isosmotic transport demands a Na+ recirculation of 50–70% in small intestine but might be barely measurable in proximal tubule. The model fails to reproduce a certain type of observations: The reduced volume absorption at transepithelial osmotic equilibrium in AQP1 knockout mice, and the stimulated water absorption by gallbladder in diluted external solutions. Thus, it indicates cellular regulation of apical Na+ uptake, which is not included in the mathematical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. Considering bidirectional fluxes of isotopes through two membranes in series we arrived at the same general conclusion (Larsen et al., 2006).

  2. In the AQP1(−/−) computations the relationship between J V and Δπ is not strictly linear but upward concave. In the original paper P f was estimated near equilibrium, which resulted in a somewhat larger P f (Larsen et al., 2006)).

References

  • Agre P., Nielsen S. 1996. The aquaporin family of water channels in kidney. Néphrologie 17:409–415

    PubMed  CAS  Google Scholar 

  • Barry R.J.C., Smyth D.H., Wright E.M. 1965. Short-circuit current and solute transfer by rat jejunum. J. Physiol. 181:410–431

    PubMed  CAS  Google Scholar 

  • Barry P.H., Diamond J.M. 1984. Effects of unstirred layers on membrane phenomena. Physiol. Rev. 64:763–872

    PubMed  CAS  Google Scholar 

  • Berry C.A. 1983. Water permeability and pathways in proximal tubules. Am. J. Physiol. 245:F279–F294

    PubMed  CAS  Google Scholar 

  • Boulpaep E.L., Maunsbach A.B., Tripathi S., Weber M.R. 1993. Mechanism of isosmotic water transport in leaky epithelia: Consensus and inconsistencies. In: H.H. Ussing, J. Fischbarg, O. Sten-Knudsen, E.H. Larsen, N.J. Willumsen (eds) Proc. Alfred Benzon Symp. 34, Isotonic Transport in Leaky Epithelia, Munksgaard, Copenhagen. pp 53–67

    Google Scholar 

  • Cassola A.C., Mollehauer M., Frömter E. 1983. The intracellular chloride activity of rat kidney proximal tubule cells. Pflügers Arch. 399:259–265

    Article  PubMed  CAS  Google Scholar 

  • Curran P.F. 1960. Na, Cl, and water transport by rat ileum in vitro. J. Gen. Physiol. 43:1137–1148

    Article  PubMed  CAS  Google Scholar 

  • Curran P.F., Macintosh J.R. 1962. A model system for biological water transport. Nature 193:347–348

    Article  PubMed  CAS  Google Scholar 

  • Curran P.F., Solomon A.K. 1957. Ion and water fluxes in the ileum of rats. J. Gen. Physiol. 41:143–168

    Article  PubMed  CAS  Google Scholar 

  • Deetjen P., Kramer K. 1961. Die Abhängigheit des O2-Verbrauchs der Niere von der Na-Rückresorption. Pflügers Arch. 273:636–642

    Article  CAS  Google Scholar 

  • Denker B.M., Smith B.L., Kuhajda P.P., Agre P. 1988. Identification, purification, and partial characterization of a novel Mr 28000 integral membrane protein from erythrocytes and renal tubules. J. Biol. Chem. 263:15634–15642

    PubMed  CAS  Google Scholar 

  • Diamond J.M. 1962. The reabsorptive function of the gall-bladder. J. Physiol. 161:442–473

    PubMed  CAS  Google Scholar 

  • Diamond J.M. 1964a. Transport of salt and water in rabbit and guinea pig gall bladder. J. Gen. Physiol. 48:1–14

    Article  CAS  Google Scholar 

  • Diamond J.M. 1964b. The mechanism of isotonic water transport. J. Gen. Physiol. 48:15–42

    Article  CAS  Google Scholar 

  • Diamond J.M., Bossert W.H. 1967. Standing gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J. Gen. Physiol. 50:2061–2083

    Article  PubMed  CAS  Google Scholar 

  • Edelman A., Curci S., Samarzija I., Frömter E. 1978. Determination of intracellular K+ activity in rat kidney proximal tubular cells. Pflügers Arch. 378:37–45

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein A. 1987. Water movement through lipid bilayers, pores, and plasma membranes. Theory and Reality. John Wiley & Sons. New York

    Google Scholar 

  • Fishbarg J., Diecke F.P.J. 2005. A mathematical model of electrolyte and fluid transport across corneal epithelium. J. Membrane Biol. 203:41–56

    Article  CAS  Google Scholar 

  • Frederiksen, O., Leyssac, P.P. 1969. Transcellular transport of isosmotic volumes by rabbit gall-bladder in vitro. J. Physiol. 201:201–224

    PubMed  CAS  Google Scholar 

  • Frizzell R.A., Schultz S.G. 1972. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences. J. Gen. Physiol. 59:318–346

    Article  PubMed  CAS  Google Scholar 

  • Frömter, E. 1979. Solute transport across epithelia: what can we learn from micropuncture studies on kidney tubules? J. Physiol. 288:1–31

    PubMed  Google Scholar 

  • Frömter E., Rumrich G., Ullrich K.J. 1973. Phenomenologic description of Na+, Cl and HCO 3 absorption. Pflügers Arch. 343:189–220

    Article  PubMed  Google Scholar 

  • Green R., Giebisch G. 1984. Luminal hypotonicity: a driving force for fluid absorption from the proximal tubule. Am. J. Physiol. 246:F167–F117

    PubMed  CAS  Google Scholar 

  • Green R., Giebisch G., Unwin R., Weinstein A.M. 1991. Coupled water transport by rat proximal tubule. Am. J. Physiol. 261:F1046–F1054

    PubMed  CAS  Google Scholar 

  • Gögelein H., Greger R. 1986. Na+ selective channels in the apical membrane of rabbit late proximal tubule (pars recta). Pflügers Arch. 406:198–203

    Article  PubMed  Google Scholar 

  • Guggino W.B., London R., Boulpaep E.L., Giebisch G. 1983. Chloride transport across the basolateral cell membrane of the Necturus proximal tubule. J. Membrane Biol. 71:227–240

    Article  CAS  Google Scholar 

  • Halm D.R., Krasny E.J., Frizzell R.A. 1985a. Electrophysiology of flounder intestinal mucosa. I. Conductance properties of the cellular and paracellular pathways. J. Gen. Physiol. 85:843–864

    Article  CAS  Google Scholar 

  • Halm D.R., Krasny E.J., Frizzell R.A. 1985b. Electrophysiology of flounder intestinal mucosa. II. Relation of the electric potential to coupled Na-Cl absorption. J. Gen. Physiol. 85:865–883

    Article  CAS  Google Scholar 

  • Hertz G. 1922. Ein neues Verfahren zur Trennung von Gasgemischen durch Diffusion. Physik. Z. 23:433–434

    CAS  Google Scholar 

  • Jørgensen P.L. 1980. Sodium and potassium ion pump in kidney tubules. Physiol. Rev. 60:864–917

    PubMed  Google Scholar 

  • Karniski L.P., Aronson P.S. 1985. Chloride/formate exchange with formic acid recycling: A mechanism of active chloride transport across epithelial membranes. Proc. Natl. Acad. Sci. USA 82:6362–6365

    Article  PubMed  CAS  Google Scholar 

  • Kashgarian M., Biemesderfer C., Caplan M., Forbush B. 1985. Monoclonal antibody to Na,K-ATPase: immunocytochemical localization along nephron segments. Kidney Intern. 28:899–913

    CAS  Google Scholar 

  • Kovbasnjuk O., Chatton J.-Y., Friauf W.S., Spring K.R. 1995. Detemiination of the sodium permeability of the tight junctions of MDCK cells by fluorescence microscopy. J. Membrane Biol. 148:223–232

    Article  CAS  Google Scholar 

  • Kovbasnjuk O., Leader J.P., Weinstein A.M., Spring K.R. 1998. Water does not flow across the tight junctions of MDCK cell epithelium. Proc. Natl. Acad. Sci. USA 95:6526–6530

    Article  PubMed  CAS  Google Scholar 

  • Larsen E.H., Sørensen J.B., Sørensen J.N. 2000. A mathematical model of solute coupled water transport in toad small intestine incorporating recirculation of the actively transported solute. J. Gen. Physiol. 116:101–124

    Article  PubMed  CAS  Google Scholar 

  • Larsen E.H., Sørensen J.B., Sørensen J.N. 2002. Topical Review: Analysis of the sodium recirculation theory of solute-coupled water transport in small intestine. J. Physiol. 542:33–50

    Article  PubMed  CAS  Google Scholar 

  • Larsen E.H., Møbjerg N., Sørensen J.N. 2006. Fluid transport and ion fluxes in mammalian kidney proximal tubule: A model analysis of isotonic transport. Acta Physiol. 187:177–189

    Article  CAS  Google Scholar 

  • Lassen U.V., Thaysen J.H. 1961. Correlation between sodium transport and oxygen consumption in isolated renal tissue. Biochim. Biophys. Acta 47:616–618

    Article  PubMed  CAS  Google Scholar 

  • Lassen N.A., Munk O., Thaysen J.H. 1961. Oxygen consumption and sodium reabsorption in the kidney. Acta Physiol. Scand. 51:371–384

    PubMed  CAS  Google Scholar 

  • Loo D.D.F., Zeuthen T., Chandy G., Wright E.M. (1996). Cotransport of water by the Na+/glucose cotransporter. Proc. Natl. Acad. Sci. USA 93:13367–13370

    Article  PubMed  CAS  Google Scholar 

  • Martin, D.W., Diamond, J.M., 1996. Energetics of coupled active transport of sodium and chloride. J. Gen. Physiol. 50:295–315

    Article  Google Scholar 

  • Mathias R.T., Wang H. 2005. Local osmosis and isotonic transport. J. Membrane Biol. 208:39–53

    Article  CAS  Google Scholar 

  • Meinild A.-K., Klærke D.A., Loo D.D.F., Wright E.M., Zeuthen T. 1998. The human Na+/glucose transporter is a molecular water pump. J. Physiol. 508:15–21

    Article  PubMed  CAS  Google Scholar 

  • Morel F., Murayama Y. 1970. Simultaneous measurement of unidirectional and net sodium fluxes in microperfused rat proximal tubules. Pflügers Arch. 320:1–23

    Article  PubMed  CAS  Google Scholar 

  • Naftalin R.J., Tripathi S. 1986. The roles of paracellular and transcellular pathways and submucosal space in isotonic water absorption by rabbit ileum. J. Physiol. 370:409–432

    PubMed  CAS  Google Scholar 

  • Nedergaard S., Larsen E.H., Ussing H.H. 1999. Sodium recirculation and isotonic transport in toad small intestine. J. Membrane Biol. 168:241–251

    Article  CAS  Google Scholar 

  • Nielsen S., Frøkiær J., Marples D., Kwon T.-H., Agre P., Knepper M. 2002. Aquaporins in the kidney: From molecules to medicine. Physiol. Rev. 82:205–244

    PubMed  CAS  Google Scholar 

  • Parsons D.S., Wingate D.L. 1958. Fluid movements across wall of rat small intestine. Biochim. Biophys. Acta. 30:666–667

    Article  PubMed  CAS  Google Scholar 

  • Preston G.M., Caroll T.P., Guggino W.B., Agre P. 1992. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 257:385–387

    Article  Google Scholar 

  • Pihakaski-Maunsbach K., Vorum E.L., Løcke E.-M., Garty H., Karlish S.J.D., Maunsbach A.B. 2003. Immunocytochemical localization of Na,K-ATPase gamma subunit and CHIP in inner medulla of rat kidney. Ann. N. Y Acad. Sci. 986:401409

    Article  PubMed  CAS  Google Scholar 

  • Rector F.C. 1983. Sodium, bicarbonate and chloride absorption by proximal tubule. Am. J. Physiol. 244:F461–F471

    PubMed  Google Scholar 

  • Rubashkin, A., Iserovich, P., Hemandez, J.A., Fischbarg, J. 2005. Epithelial transport: protruding macromolecules and space charges can bring about electro-osmosis at the tight junctions. J. Membrane Biol. 208:251–263

    Article  CAS  Google Scholar 

  • Sackin H., Boulpaep E.L. 1975. Models for coupling of salt and water transport. Proximal Tubular Reabsorption in Necturus Kidney. J. Gen. Physiol. 66:671–733

    Article  PubMed  CAS  Google Scholar 

  • Sanchez J.M., Rubashkin A., Iserovich P., Wen Q., Ruberti J.W., Smith R.W., Rittenband D., Kuang K., Diecjke F.P.J., Fischbarg J. 2002. Evidence for a central role for electro-osmosis in fluid transport by comeal endothelium. J. Membrane Biol. 187:37–50

    Article  CAS  Google Scholar 

  • Schafer J.A. 1990. Transepithelial osmolality differences, hydraulic conductivities, and volume absorption in the proximal tubule. Annu. Rev. Physiol. 52:709–726

    Article  PubMed  CAS  Google Scholar 

  • Schafer J.A., Andreoli T.E. 1979. Perfusion of isolated mammalian renal tubules. In: G. Giebisch (ed) Transport Biology Volume 4: Transport Organs, Springer-Verlag, Berlin. pp 473–528

    Google Scholar 

  • Schafer J.A., Patlak C.S., Andreoli T.E. 1975. A component of fluid absorption linked to passive ion flows in the superficial pars recta. J. Gen. Physiol. 66:445–471

    Article  PubMed  CAS  Google Scholar 

  • Schnermann J., Chou J., Ma T., Traynor T., Knepper M.A., Verkman A.S. 1998. Defective proximal fluid reabsorplion in transgenic aquaporin-1 null mice. Proc. Natl. Acad. Sci. USA 95:9660–9664

    Article  PubMed  CAS  Google Scholar 

  • Schultz S.G. 2001. Epithelial water absorption: Osmosis or Cotransport? Proc. Natl. Acad. Sci. USA 98:3628–3630

    Article  PubMed  CAS  Google Scholar 

  • Smyth D.H., Wright E.M. 1966. Streaming potentials in the rat small intestine. J. Physiol. 182:591–602

    PubMed  CAS  Google Scholar 

  • Spring K.R. 1998. Routes and mechanisms of fluid transport by epithelia. Ann. Rev. Physiol. 60:105–119

    Article  CAS  Google Scholar 

  • Spring K.R., Hope A. 1979. Fluid transport and the dimensions of cells and interspaces of living Necturus gallbladder. J. Gen. Physiol. 73:287–305

    Article  PubMed  CAS  Google Scholar 

  • Sten-Knudsen O. 2002. Biological membranes. Theory of transport, potentials and electric impulses. Cambridge University Press, Cambridge

    Google Scholar 

  • Sten-Knudsen O., Ussing H.H. 1981. The flux ratio equation under nonstationary conditions. J. Membrane Biol. 63:233–242

    Article  CAS  Google Scholar 

  • Stirling C.E. 1972. Radioautographic localization of sodium pump sites in rabbit intestine. J. Cell. Biol. 53:704–714

    Article  PubMed  CAS  Google Scholar 

  • Thurau K. 1961. Renal reabsorption and O2 uptake in dogs during hypoxia and hydrochloro-thiazide infusion. Proc. Soc. Exp. Biol. Med. 106:714–717

    PubMed  CAS  Google Scholar 

  • Tripathi S., Boulpaep E.L. 1989. Mechanisms of water transport by epithelial cells. Quart. J. Exp. Physiol. 74:385–417

    CAS  Google Scholar 

  • Torrelli G.E., Milla E., Faelli A., Costantini S. 1966. Energy requirement for sodium reabsorption in the in vivo rabbit kidney. Am. J. Physiol. 211:576–580

    Google Scholar 

  • Ullrich K. 1973. Permeability characteristics of the mammalian nephron. In: J. Orloff, B.W. Berliner (eds) Handbook of Physiology. Section 8: Renal Physiology American Physiological Society, Bethesda. pp 377–398

    Google Scholar 

  • Ussing H.H. 1949. The distinction by means of tracers between active transport and diffusion. Acta Physiol. Scand. 19:43–56

    CAS  Google Scholar 

  • Ussing H.H., Eskesen K. (1989). Mechanism of isotonic water transport in glands. Acta Physiol. Scand. 136:443–454

    Article  PubMed  CAS  Google Scholar 

  • Ussing H.H., Lind F., Larsen E.H. 1996. Ion secretion and isotonic transport in frog skin glands. J. Membrane Biol. 152:101–110

    Article  CAS  Google Scholar 

  • Ussing H.H., Nedergaard S. 1993. Recycling of electrolytes in small intestine of toad. In: H.H. Ussing, J. Fischbarg, O. Sten-Knudsen, E.H. Larsen, N.J. Willumsen (eds) Proc. Alfred Benzon Symp. 34, Isotonic Transport in Leaky Epithelia, Munksgaard, Copenhagen. pp 25–34

    Google Scholar 

  • Vallon V., Verkman A.S., Schnermann J. 2000. Luminal hypotonicity in proximal tubule of aquaporin-1-knockout mice. Am. J. Physiol. 278:F1030–F1033

    CAS  Google Scholar 

  • Welling L.W., Welling D.J., Holsapple J.W., Evan A.P. 1987. Morphometric analysis of distinct microanatomy near the base of proximal tubule cells. Am. J. Physiol. 253:F126–F140

    PubMed  CAS  Google Scholar 

  • Weinstein A.M. 1986. A mathematical model of the rat proximal tubule. Am. J. Physiol. 250:F860–F873

    PubMed  CAS  Google Scholar 

  • Weinstein A.M. 1992. Sodium and chloride transport. In: Seldin D.W., G. Giebisch Eds. The Kidney. Physiology and Pathophysiology, 2nd edition Vol 2: Raven Press, New York. pp 1925–1973

    Google Scholar 

  • Weinstein A.M. 1994. Mathematical models of tubular transport. Annu. Rev. Physiol. 56:691–709

    Article  PubMed  CAS  Google Scholar 

  • Weinstein A.M. 2003. Mathematical models of renal fluid and electrolyte transport: acknowledging our uncertainty. Am. J. Physiol. 284:F871–F884

    CAS  Google Scholar 

  • Weinstein A.M., Stephenson J.L. 1981. Models of coupled salt and water transport across leaky epithelia. J. Membrane Biol. 60:1–20

    Article  CAS  Google Scholar 

  • Whitlock R.T., Wheeler H.O. 1964. Coupled transport of solute and water across rabbit gallbladder epithelium. J. Clin. Invest. 43:2249–2265

    Article  PubMed  CAS  Google Scholar 

  • Whittembury G., Paz-Aliaga A., Biondi A., Carpi-Medina P., Gonzales E., Linares H. 1985. Pathways for volume flow and volume regulation in leaky epithelia. Pflügers Arch. Eur. J. Physiol. 404:S17–S22

    Article  Google Scholar 

  • Whittembury G., Malnic G., Mello-Aires M., Amorena C. 1988. Solvent drag of sucrose during absorption indicates paracellular water flow in the rat kidney proximal tubule. Pflügers Arch. Eur. J. Physiol. 412:541–547

    Article  CAS  Google Scholar 

  • Whittembury G., Reuss L. 1992. Mechanism of coupling of solute and solvent transport in epithelia. In: Seldin D.W., G. Giebisch Eds The Kidney. Physiology and Pathophysiology, 2nd edition Vol 1: Raven Press, New York. pp 317–360

    Google Scholar 

  • Whittembury G., Echevania M., Gutierrez A., Gonzales E. 1993. Absorption of salt and water in the proximal tubule. In: H.H. Ussing, J. Fischbarg, O. Sten-Knudsen, E.H. Larsen, N.J. Willumsen (eds) Proc. Alfred Benzon Symp. 34, Isotonic Transport in Leaky Epithelia, Munksgaard, Copenhagen. pp 37–48

    Google Scholar 

  • Windhager E.E. 1979. Sodium chloride transport. In: G. Giebisch (ed.), Membrane Transport in Biology Volume IV. Transport Organs. Springer-Verlag, Berlin. pp 145–214

    Google Scholar 

  • Windhager E.E., Whittembury G., Oken D.E., Schatzmann H.J., Solomon A.K. 1958. Single proximal tubules of the Necturus kidney. III. Dependence of H2O movement on NaCl concentration. Am. J. Physiol. 197:313–318

    Google Scholar 

  • Yoshitomi K., Frömter E. 1985. How big is the electrochemical potential difference of Na+ across rat renal proximal tubular cell membranes in vivo? Pflügers Arch. 405(Suppl.1):S121–S126

    Article  PubMed  Google Scholar 

  • Zeuthen T., Belhage B., Zeuthen E. 2006. Water transport by Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS). The dependence of substrate size at high resolution. J. Physiol. 570:485–499

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study is supported by a frame grant from the Danish Natural Science Research Council, 272-05-0417.26

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.H. Larsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsen, E., Møbjerg, N. Na+ Recirculation and Isosmotic Transport. J Membrane Biol 212, 1–15 (2006). https://doi.org/10.1007/s00232-006-0864-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0864-x

Keywords

Navigation