Skip to main content
Log in

Determination of intracellular K+ activity in rat kidney proximal tubular cells

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The intracellular K+ activity of rat kidney proximal tubular cells was determined in vivo, using intracellular microelectrodes. In order to minimize damage from the impaling electrodes, separate measurements on separate cells, were performed with single-barrelled KCl-filled non-selective electrodes and single-barrelled, K+-sensitive microelectrodes, which were filled with a liquid K+-exchanger resin that has also a small sensitivity to Na+. Both electrodes had tip diameters of 0.2 μm or below. The proper intracellular localization of the electrodes was ascertained by recording the cell potential response to intermittent luminal perfusions with glucose. The membrane potential measured with the non-selective microelectrodes was −76.3±8.1 mV (n=81) and the potential difference measured with the K+-sensitive microelectrode was −7.2±5.8 mV (n=32). Based on the activity of K+ in the extracellular fluid of ∼3 mmol/l the intracellular K+ activity was estimated to be ∼82 mmol/l. Assuming equal K+-activity coefficients to prevail inside and outside the cell, this figure suggests that the intracellular K+ concentration is ∼113 mmol/l which must be considered as a lower estimate, however. The data indicate that the K+-ion distribution between cytoplasm and extracellular fluid is not in equilibrium with the membrane potential, but that K+ is actively accumulated inside the cell. This result provides direct evidence for the presence of an active K+ pump in the tubular cell membranes, which in view of other observations, must be envisaged as a (not necessarily electroneutral) Na+/K+-exchange pump which operates in the peritubular cell membrane and is eventually responsible for the major part of the tubular solute and water absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burg, M. B., Orloff, J.: Effect of temperature and medium K on Na and K fluxes in separated renal tubules. Am. J. Physiol.211, 1005–1010 (1966)

    Google Scholar 

  2. Cardinal, J., Duchesneau, D.: Effect of potassium on proximal tubular function. Am. J. Physiol.234, F381-F385 (1978)

    Google Scholar 

  3. Curci, S., Edelman, A., Samarzija, I., Frömter, E.: Application of ion-selective microelectrodes to rat kidney proximal tubular cells. Drug Res.28, 878 (1978)

    Google Scholar 

  4. Davies, J. E. W., Moody, G. J., Price, W. M., Thomas, J. D. R.: Selective potassium-sensitive electrodes based on potassium tetra-p-chlorophenylborate-poly (vinyl chloride) sensor membranes. Lab. Pract.22, 20–25 (1973)

    Google Scholar 

  5. Frömter, E.: Magnitude and significance of the paracellular shunt path in rat kidney proximal tubule. In: Intestinal permeation (M. Kramer and F. Lauterbach, eds.), pp. 166–178. Amsterdam: Excerpta Medica 1977

    Google Scholar 

  6. Frömter, E., Geßner, K.: Active transport potentials, membrane diffusion potentials and streaming potentials across rat kidney proximal tubular epithelium. Pflügers Arch.351, 85–98 (1974)

    Google Scholar 

  7. Frömter, E., Geßner, K.: Effect of inhibitors and diuretics on electrical potential differences in rat kidney proximal tubule. Pflügers Arch.357, 209–224 (1975)

    Google Scholar 

  8. Frömter, E., Müller, C. W., Wick, T.: permeability properties of the proximal tubular epithelium of the rat kidney studied with electrophysiological methods. In: Electrophysiology of epithelial cells (G. Giebisch, ed.), pp. 119–146. Stuttgart-New York: F. K. Schattauer 1971

    Google Scholar 

  9. Frömter, E., Sato, K., Gessner, K.: Electrical studies on the mechanism of H+/HCO 3 transport across rat kidney proximal tubule. VI. Internat. Congress of Nephrology. (Proc.) (S. Giovannetti, V. Bonomini, and G. D'Amico, eds.), pp. 108–112. Basel: Karger 1976

    Google Scholar 

  10. Fujimoto, M., Kubota, T.: Physicochemical properties of a liquid ion exchanger microelectrode and its application to biological fluids. Jap. J. Physiol.26, 631–650 (1976)

    Google Scholar 

  11. Iupac: Recommendations for nomenclature of ion-selective electrodes. Pure and Appl. Chem.48, 127–132 (1976)

    Google Scholar 

  12. Khuri, R. N., Agulian, S. K.: Intracellular bicarbonate and pH of single cells of proximal tubule of rat kidney. Proc. IUPS Paris, Vol. 8, Abstr. No. 1128 (1977)

  13. Khuri, R. N., Agulian, S. K., Bogharian, K.: Electrochemical potentials of potassium in proximal renal tubule of rat. Pflügers Arch.346, 319–326 (1974)

    Google Scholar 

  14. Khuri, R. N., Agulian, S. K., Kalloghlian, A.: Intracellular potassium in cells of the distal tubule. Pflügers Arch.335, 297–308 (1972)

    Google Scholar 

  15. Khuri, R. N., Hajjar, J. J., Agulian, S. K.: Measurement of intracellular potassium with liquid ion-exchange microelectrodes. J. Appl. Physiol.32, 419–422 (1972)

    Google Scholar 

  16. Lev, A. A., Armstrong, W. McD.: Ionic activities in cells. In: Current topics in membranes and transport, Vol. 6, pp. 59–123 (F. Bronner and A. Kleinzeller, eds.). New York: Acad. Press 1975

    Google Scholar 

  17. Moody, G. J., Thomas, J. D. R.: Selective Ion Sensitive Electrodes. Watford: Merrow 1971

    Google Scholar 

  18. Morf, W. E., Ammann, D., Pretsch, E., Simon, W.: Carrier antibiotics and model compounds as components of selective ion-sensitive electrodes. Pure and Appl. Chem.36, 421–439 (1973)

    Google Scholar 

  19. Neher, E., Lux, H. D.: Rapid changes of potassium concentration at the outer surface of exposed single neurons during membrane current flow. J. Gen. Physiol.61, 385–399 (1973)

    Google Scholar 

  20. Nicolsky, B. P.: Theory of the glass electrode I. Acta Physicochim. USSR7, 597 (1937), cited after Lev and Armstrong [16]

    Google Scholar 

  21. Robinson, R. A.: Activity coefficients of sodium chloride and potassium chloride in mixed aqueous solutions at 25°. J. Phys. Chem.65, 662–667 (1961)

    Google Scholar 

  22. Robinson, R. A., Stokes, R. H.: Electrolyte Solutions, (2nd ed.). London: Butterworths 1959

    Google Scholar 

  23. Sandblom, J., Eisenman, G., Walker, J. L., Jr.: Electrical phenomena associated with the transport of ions and ion pairs in liquid ion-exchange membranes. I. Zero current properties. J. Phys. Chem.71, 3862–3870 (1967)

    Google Scholar 

  24. Sato, K.: Modifications of glass microelectrodes: a self-filling and a semifloating glass microelectrode. Am. J. Physiol.232, C207-C210 (1977)

    Google Scholar 

  25. Schmidt, U., Dubach, U. C.: Na−K-stimulated adenosinetriphosphatase: Intracellular localization within the proximal tubule of the rat nephron. Pflügers Arch.330, 265–270 (1971)

    Google Scholar 

  26. Srinivasan, K., Rechnitz, G. A.: Selectivity studies on liquid membrane, ion-selective electrodes. Analytical Chem.41, 1203–1208 (1969)

    Google Scholar 

  27. Ullrich, K. J., Frömter, E., Baumann, K.: Micropuncture and microanalysis in kidney physiology. In: Laboratory techniques in membrane biophysics (H. Passow and R. Stämpfli, eds.), pp. 106–129. Berlin-Heidelberg-New York: Springer 1969

    Google Scholar 

  28. Walker, J. L., Jr.: Ion specific liquid ion exchanger microelectrodes. Analytical Chem.43, 89A-92A (1971)

    Google Scholar 

  29. Walker, J. L., Jr., Brown, H. M.: Intracellular ionic activity measurements in nerve and muscle. Physiol. Rev.57, 729–778 (1977)

    Google Scholar 

  30. Whittembury, G.: Relationship between sodium extrusion and electrical potentials in kidney cells. In: Electrophysiology of epithelial cells (G. Giebisch, ed.), pp. 153–178. Stuttgart: Schattauer 1971

    Google Scholar 

  31. Wick, T.: Das Zellpotential des proximalen Tubulus der Rattenniere und seine Abhängigkeit vom peritubulären Ionenmilieu. Thesis, Johann Wolfgang Goethe-Universität, Frankfurt (Main) 1970

    Google Scholar 

  32. Zeuthen, T., Hiam, R. C., Silver, I. A.: Microelectrode recording of ion activity in brain. Advances Exp. Med. Biol.50, 145–156 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edelman, A., Curci, S., Samaržija, I. et al. Determination of intracellular K+ activity in rat kidney proximal tubular cells. Pflugers Arch. 378, 37–45 (1978). https://doi.org/10.1007/BF00581956

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00581956

Key words

Navigation