Skip to main content
Log in

Numerical computation of natural convection in an isosceles triangular cavity with a partially active base and filled with a Cu–water nanofluid

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper discusses the results of a study related to natural convection cooling of a heat source located on the bottom wall of an inclined isosceles triangular enclosure filled with a Cu water-nanofluid. The right and left walls of the enclosure are both maintained cold at constant equal temperatures, while the remaining parts of the bottom wall are insulated. The study has been carried out for a Rayleigh number in the range 104 ≤ Ra ≤ 106, for a heat source length in the range 0.2 ≤ ε ≤0.8, for a solid volume fraction in the range 0 ≤ ϕ≤0.06 and for an inclination angle in the range 0° ≤ δ≤45°. Results are presented in the form of streamline contours, isotherms, maximum temperature at the heat source surface and average Nusselt number. It is noticed that the addition of Cu nanoparticles enhances the heat transfer rate and therefore cooling effectiveness for all values of Rayleigh number, especially at low values of Ra. The effect of the inclination angle becomes more noticeable as one increases the value of Ra. For high Rayleigh numbers, a critical value for the inclination angle of δ = 15° is found for which the heat source maximum temperature is highest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A:

Aspect ratio (H/L)

b:

Length of heat source (m)

ε:

Dimensionless length of heat source (b/L)

Cp :

Specific heat (J kg−1 K−1)

k:

Thermal conductivity (W m−1 K−1)

H:

Height of the cavity (m)

L:

Length of the cavity (m)

Nus :

Local Nusselt number on the heat source surface

Nu:

Average Nusselt number along the heat source

p:

Fluid pressure (Pa)

P:

Dimensionless pressure \( \left( {{\text{pL}}^{2} /{{\uprho}}_{\text{nf}} {{\upalpha}}_{\text{f}} } \right) \)

Pr:

Prandtl number \( \left( {{{\upnu}}_{\text{f}} /{{\upalpha}}_{\text{f}} } \right) \)

q″:

Heat generation per area (W m−2)

Ra:

Rayleigh number (gβfL3ΔT/νfαf)

T:

Temperature (K)

u, v:

Velocity components in directions x and y (m s−1)

U, V:

Dimensionless velocity components x and y \( \left( {{\text{uL}}/{{\upalpha}}_{\text{f}} ,{\text{vL}}/{{\upalpha}}_{\text{f}} } \right) \)

x, y:

Cartesian coordinates (m)

X, Y:

Dimensionless coordinates (x/L, y/L)

g:

Gravitational acceleration (m s−2)

α:

Thermal diffusivity (m2 s−1) (k/ρCp)

β:

Thermal expansion coefficient (K−1)

ΔT:

Ref. temperature difference (K) (q″L/Kf)

ϕ :

Solid volume fraction

θ:

Dimensionless temperature ((T − Tc)/ΔT)

δ:

Inclination angle (°)

μ:

Dynamic viscosity (Ns m−2)

υ:

Kinematic viscosity (m2 s−1) (μ/ρ)

ρ:

Density (kg m−3)

c:

Cold wall

f:

Pure fluid

nf:

Nanofluid

p:

Nanoparticle

s:

Active base surface

References

  1. Lei C, Armfield SW, Patterson JC (2008) Unsteady natural convection in a water-filled isosceles triangular enclosure heated from below. Int J Heat Mass Transf 51:2637–2650

    Article  MATH  Google Scholar 

  2. Kent EF (2009) Numerical analysis of laminar natural convection in isosceles triangular enclosures for cold base and hot inclined walls. Mech Res Commun 36:497–508

    Article  MATH  Google Scholar 

  3. Flack RD, Konopnicki TT, Rooke JH (1979) The measurement of natural convective heat transfer in triangular enclosures. ASME J Heat Transf 101(1979):648–654

    Article  Google Scholar 

  4. Flack RD, Brun K, Schnipke RJ (1995) Measurement and prediction of natural convection velocities in triangular enclosures. Int J Heat Fluid Flow 16:106–113

    Article  Google Scholar 

  5. Akinsete VA, Coleman TA (1982) Heat transfer by steady laminar free convection in triangular enclosures. Int J Heat Mass Trans 25:991–998

    Article  MATH  Google Scholar 

  6. Holtzman GA, Hill RW, Ball KS (2000) Laminar natural convection in isosceles triangular enclosures heated from below and symmetrically cooled from above. J Heat Transf 122:485–491

    Article  Google Scholar 

  7. Basak T, Roy S, Babu SK, Balakrishnan AR (2008) Finite element analysis of natural convection flow in a isosceles triangular enclosure due to uniform and non-uniform heating at the sidewalls. Int J Heat Mass Transf 51:4496–4505

    Article  MATH  Google Scholar 

  8. Varol Y, Oztop HF, Varol A (2007) Natural convection in porous triangular enclosures with a solid adiabatic fin attached to the horizontal wall. Int Commun Heat Mass Transf 34:19–27

    Article  Google Scholar 

  9. Das SK, Choi SUS, Yu W, Pradeep T (2007) Nanofluids: science and technology. Wiley, New York

    Book  Google Scholar 

  10. Khanafer K, Vafai K (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 46:3639–3653

    Article  MATH  Google Scholar 

  11. Mahmoudi AH, Shahi M, Raouf AH, Ghasemian A (2010) Numerical study of natural convection cooling of horizontal heat source mounted in a square cavity filled with nanofluid. Int Commun Heat Mass Transf 37:1135–1141

    Article  Google Scholar 

  12. Aminossadati SM, Ghasemi B (2009) Natural convection cooling of a localized heat source at the bottom of a nanofluid-filled enclosure. Eur J Mech B Fluids 28:630–640

    Article  MATH  Google Scholar 

  13. Alloui Z, Vasseur P, Reggio M (2011) Natural convection of nanofluids in a shallow cavity heated from below. Int J Therm Sci 50:385–393

    Article  Google Scholar 

  14. Aminossadati SM, Ghasemi B (2011) Enhanced natural convection in an isosceles triangular enclosure filled with a nanofluid. Comput Math Appl 61:1739–1753

    Article  MathSciNet  MATH  Google Scholar 

  15. Sun Q, Pop I (2011) Free convection in a triangle cavity filled with a porous medium saturated with nanofluids with flush mounted heater on the wall. Int J Therm Sci 50:2141–2153

    Article  Google Scholar 

  16. Yu ZT, Xu X, Hu YC, Fan LW, Cen KF (2011) Numerical study of transient buoyancy-driven convective heat transfer of water-based nanofluids in a bottom-heated isosceles triangular enclosure. Int J Heat Mass Transf 54:526–532

    Article  MATH  Google Scholar 

  17. Abu-Nada E, Oztop HF (2009) Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid. Int J Heat Fluid Flow 30:669–678

    Article  Google Scholar 

  18. Ogu EB (2009) Natural convection of water-based nanofluids in an inclined enclosure with a heat source. Int J Therm Sci 48:2063–2073

    Article  Google Scholar 

  19. Goutam S, Islam MdT, Saha S, Islam, MdQ (2007) Natural convection in a tilted isosceles triangular enclosure with discrete bottom heating. Thammasat Int J Sci Technol 12(4):24–35

    Google Scholar 

  20. Sheikhzadeh GA, Arefmanesh A, Kheirkha MH, Abdollahi R (2011) Natural convection of Cu–water nanofluid in a cavity with partially active side walls. Eur J Mech B Fluids 30:166–176

    Article  MATH  Google Scholar 

  21. Brinkman HC (1952) The viscosity of concentrated suspensions and solution. J Chem Phys 20:571–581

    Article  Google Scholar 

  22. Oztop HF, Varol Y, Koca A, Firat M (2012) Experimental and numerical analysis of buoyancy-induced flow in inclined triangular enclosures. Int Commun Heat Mass Transf 39:1237–1244

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issam Rezaiguia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezaiguia, I., Kadja, M., mebrouk, R. et al. Numerical computation of natural convection in an isosceles triangular cavity with a partially active base and filled with a Cu–water nanofluid. Heat Mass Transfer 49, 1319–1331 (2013). https://doi.org/10.1007/s00231-013-1170-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-013-1170-7

Keywords

Navigation