Skip to main content
Log in

Numerical investigation of the effect of fins on heat transfer enhancement of a laminar non-Newtonian nanofluid flow through a corrugated channel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the flow pattern and heat transfer enhancement of a non-Newtonian nanofluid in the presence of fins in a corrugated channel were numerically investigated. The fluid flow is in the hydraulically laminar regime, and the channel is under a constant heat flux. A set of case studies are conducted for the flow through the corrugated channel to analyze the effect of the main contributing factors; Reynolds number, the number of corrugation, the height of fin, the arrangement of fins (Cases A, B, and C), and the nanofluid volume fraction, on the flow field and the heat transfer characteristics as well. Comparing the results of the finned cases with different cases (without fins) indicates that implementing fins leads to a considerable change in the flow and temperature fields, resulting in the enhancement of heat transfer. Furthermore, results showed that using two corrugations in the channel provides a better heat transfer rate than other corrugation numbers. The results indicate that increasing the height of fins from 5 to 10 mm, changes the flow pattern and velocity distribution in the vicinity of the fins, and the maximum velocity occurs right on the head of the fins. Moreover, the results show that by increasing the height of fins, the pressure drop increases in the vicinity of fins. The bulk temperature in the vicinity of the corrugations is higher than in other regions, and by increasing the height of fins, the maximum bulk temperature decreases in these regions. Besides, increasing the nanofluid volume fraction and Reynolds number increases the local and mean Nusselt numbers. Moreover, it was found that the maximum value of \({{{\text{Nu}}_{{{\text{m}}\_{\text{fin}}}} } \mathord{\left/ {\vphantom {{{\text{Nu}}_{{{\text{m}}\_{\text{fin}}}} } {{\text{Nu}}_{{\text{m}}} }}} \right. \kern-\nulldelimiterspace} {{\text{Nu}}_{{\text{m}}} }}\), at the highest Reynolds number (Re = 1000) occurs for case B with a fin height of Z = 7.5 mm. The results show that by optimizing the arrangement of fins, the mean Nusselt number can be improved 25.7 and 49.7%, compared to rectangular channel and smooth channel, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(c_{{\text{P}}}\) :

Specific heat coefficient \(({\text{J}} \,{\text{kg}}^{-1} \,{\text{K}}^{-1})\)

\(h_{{\text{x}}}\) :

Local heat transfer coefficient (\({{\text{W}}{\text{m}}}^{{-2}}{\text{K}}^{{-1}}\))

\(H\) :

Height of channel (\({\text{m}}\))

\(K\) :

Thermal conductivity (\({{\text{W}}{\text{m}}}^{{-1}}{\text{K}}^{{-1}}\)),

\(L_{1}\) :

Entrance length of channel (\({\text{m}}\))

\(L_{2}\) :

Length of channel (\({\text{m}}\))

\(L_{3}\) :

Exit length of channel (\({\text{m}}\))

\(n\) :

Power-law index

\({\text{Nu}}\) :

Nusselt number

\(P\) :

Pressure (\({\text{Pa}}\))

Pr:

Prandtl number

\(q^{\prime\prime}\) :

Heat flux \(({{\text{W}}{\text{m}}}^{{-2}})\)

\({\text{Re}}\) :

Reynolds number

\(u\) :

U-component of the velocity vector (\({\text{m}}{\text{s}}^{-1}\))

\(U\) :

Velocity magnitude (\({\text{m/s}}\))

\(v\) :

Y-component of the velocity vector (\({\text{ms}}^{-1}\))

\(W\) :

Fin thickness (\({\text{m}}\))

\(x\) :

X coordinate (\({\text{m}}\))

\(y\) :

Y coordinate (\({\text{m}}\))

\(Z\) :

Height of fin (\({\text{m}}\))

\(\varphi\) :

Volume fraction

\(\kappa_{{\text{b}}}\) :

Boltzmann constant (\({\text{m}}^{2} \,{\text{kg}}\, {\text{s}}^{-2}\, {\text{K}}^{-1}\))

\(\mu\) :

Dynamic viscosity (\({\text{N}}{\text{m}}\,{\text{s}}^{-1}\))

\(\rho\) :

Density (\({\text{kg\,m}}^{-3}\))

\(\tau\) :

Shear stress (\({\text{N\.m}}^{-2}\))

\(T\) :

Temperature (\({\text{K}}\))

\(_{{{\text{in}}}}\) :

Local value at inlet

\(f\) :

Base fluid

\(m\) :

Mean

\({\text{nf}}\) :

Nanofluid

\({\text{out}}\) :

Local value at outlet

\(p\) :

Nanoparticle

References

  1. Mozafari H, Eyvazian A, Hamouda AM, Crupi V, Epasto G, Gugliemino E. Numerical and experimental investigation of corrugated tubes under lateral compression. Int J Crashworthiness. 2018;23(4):461–73. https://doi.org/10.1080/13588265.2017.1345592.

    Article  Google Scholar 

  2. Wang W, Zhang Y, Liu J, Wu Z, Li B, Sundén B. Entropy generation analysis of fully-developed turbulent heat transfer flow in inward helically corrugated tubes. Numer Heat Transf Part A Appl. 2018;73(11):788–805. https://doi.org/10.1080/10407782.2018.1459137.

    Article  Google Scholar 

  3. Han H, Yang L, Chen X, Li B. Numerical and experimental study of flow and heat transfer in outwardly convex corrugated tubes with a twisted tape insert. Heat Transf Res. (2018). https://doi.org/10.1615/HeatTransRes.2018020644

  4. Salami M, Khoshvaght-Aliabadi M, Feizabadi A. Investigation of corrugated channel performance with different wave shapes. J Therm Anal Calorim. 2019;138(5):3159–74. https://doi.org/10.1007/s10973-019-08361-y.

    Article  CAS  Google Scholar 

  5. Hilo AK, Iborra AA, Sultan MT, Hamid MF. Effect of corrugated wall combined with backward-facing step channel on fluid flow and heat transfer. Energy. 2020;1(190):116294. https://doi.org/10.1016/j.energy.2019.116294.

    Article  Google Scholar 

  6. Ajeel RK, Salim WI. Experimental assessment of heat transfer and pressure drop of nanofluid as a coolant in corrugated channels. J Therm Anal Calorim. 2020;13:1–3. https://doi.org/10.1007/s10973-020-09656-1.

    Article  CAS  Google Scholar 

  7. Pahlevaninejad N, Rahimi M, Gorzin M. Thermal and hydrodynamic analysis of non-Newtonian nanofluid in wavy microchannel. J Therm Anal Calorim. 2020;9:1–5. https://doi.org/10.1007/s10973-019-09229-x.

    Article  CAS  Google Scholar 

  8. Yang D, Pettersen B, Andersson HI, Narasimhamurthy VD. Analysis of vortex splitting characteristics in the wake of an inclined flat plate using Hilbert-Huang transform. Acta Mech. 2015;226(4):1085–104. https://doi.org/10.1007/s00707-014-1222-1.

    Article  Google Scholar 

  9. Ali MS, Anwar Z, Mujtaba MA, Soudagar ME, Badruddin IA, Safaei MR, Iqbal A, Afzal A, Razzaq L, Khidmatgar A, Goodarzi M. Two-phase frictional pressure drop with pure refrigerants in vertical mini/micro-channels. Case Stud Therm Eng. 2021;1(23):100824. https://doi.org/10.1016/j.csite.2020.100824.

    Article  Google Scholar 

  10. Miansari M, Aghajani H, Zarringhalam M, Toghraie D. Numerical study on the effects of geometrical parameters and Reynolds number on the heat transfer behavior of carboxy-methyl cellulose/CuO non-Newtonian nanofluid inside a rectangular microchannel. J Therm Anal Calorim. 2020;27:1–9. https://doi.org/10.1007/s10973-020-09447-8.

    Article  CAS  Google Scholar 

  11. Hader M, Al-Kouz W. Performance of a hybrid photovoltaic/thermal system utilizing water-Al2O3 nanofluid and fins. Int J Energy Res. 2019;43(1):219–30. https://doi.org/10.1002/er.4253.

    Article  Google Scholar 

  12. Tian MW, Rostami S, Aghakhani S, Goldanlou AS, Qi C. A techno-economic investigation of 2D and 3D configurations of fins and their effects on heat sink efficiency of MHD hybrid nanofluid with slip and non-slip flow. Int J Mech Sci. 2020;25:105975. https://doi.org/10.1016/j.ijmecsci.2020.105975.

    Article  Google Scholar 

  13. Nygård F, Andersson HI. Numerical investigations of laminar flow characteristics in helically finned pipes. Acta Mech. 2011;222(3–4):321–30. https://doi.org/10.1007/s00707-011-0534-7.

    Article  Google Scholar 

  14. Buyruk E, Karabulut K. Research of heat transfer augmentation in plate fin heat exchangers having different fin types. J Eng Thermophys. 2020;29(2):316–30. https://doi.org/10.1134/S1810232820020137.

    Article  CAS  Google Scholar 

  15. Shamsabadi H, Rashidi S, Esfahani JA. Entropy generation analysis for nanofluid flow inside a duct equipped with porous baffles. J Therm Anal Calorim. 2019;135(2):1009–19. https://doi.org/10.1007/s10973-018-7350-4.

    Article  CAS  Google Scholar 

  16. Ghanbari S, Javaherdeh K. Investigation of applying nanoporous graphene non-Newtonian nanofluid on rheological properties and thermal performance in a turbulent annular flow with perforated baffles. J Therm Anal Calorim. 2020;139(1):629–47. https://doi.org/10.1007/s10973-019-08389-0.

    Article  CAS  Google Scholar 

  17. Rashidi S, Akbarzadeh M, Karimi N, Masoodi R. Combined effects of nanofluid and transverse twisted-baffles on the flow structures, heat transfer and irreversibilities inside a square duct–a numerical study. Appl Therm Eng. 2018;5(130):135–48. https://doi.org/10.1016/j.applthermaleng.2017.11.048.

    Article  CAS  Google Scholar 

  18. Shamsi MR, Akbari OA, Marzban A, Toghraie D, Mashayekhi R. Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs. Phys E. 2017;1(93):167–78. https://doi.org/10.1016/j.physe.2017.06.015.

    Article  CAS  Google Scholar 

  19. Sheikholeslami M, Keramati H, Shafee A, Li Z, Alawad OA, Tlili I. Nanofluid MHD forced convection heat transfer around the elliptic obstacle inside a permeable lid drive 3D enclosure considering lattice Boltzmann method. Phys A. 2019;1(523):87–104. https://doi.org/10.1016/j.physa.2019.02.014.

    Article  CAS  Google Scholar 

  20. Sheikholeslami M. Influence of magnetic field on Al2O3-H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM. J Mol Liq. 2018;1(263):472–88. https://doi.org/10.1016/j.molliq.2018.04.111.

    Article  CAS  Google Scholar 

  21. Hoseinzadeh S, Otaghsara ST, Khatir MZ, Heyns PS. Numerical investigation of thermal pulsating alumina/water nanofluid flow over three different cross-sectional channel. Int J Numer Meth Heat Fluid Flow. 2019. https://doi.org/10.1108/HFF-09-2019-0671.

    Article  Google Scholar 

  22. Sarafraz MM, Safaei MR, Tian Z, Goodarzi M, Bandarra Filho EP, Arjomandi M. Thermal assessment of nano-particulate graphene-water/ethylene glycol (WEG 60: 40) nano-suspension in a compact heat exchanger. Energies. 2019;12(10):1929. https://doi.org/10.3390/en12101929.

    Article  CAS  Google Scholar 

  23. Goodarzi M, Tlili I, Tian Z, Safaei MR. Efficiency assessment of using graphene nanoplatelets-silver/water nanofluids in microchannel heat sinks with different cross-sections for electronics cooling. Int J Numer Meth Heat Fluid Flow. 2019. https://doi.org/10.1108/HFF-12-2018-0730.

    Article  Google Scholar 

  24. Sarafraz MM, Tian Z, Tlili I, Kazi S, Goodarzi M. Thermal evaluation of a heat pipe working with n-pentane-acetone and n-pentane-methanol binary mixtures. J Therm Anal Calorim. 2020;139(4):2435–45. https://doi.org/10.1007/s10973-019-08414-2.

    Article  CAS  Google Scholar 

  25. Ahmadi MH, Mohseni-Gharyehsafa B, Ghazvini M, Goodarzi M, Jilte RD, Kumar R. Comparing various machine learning approaches in modeling the dynamic viscosity of CuO/water nanofluid. J Therm Anal Calorim. 2020;139(4):2585–99. https://doi.org/10.1007/s10973-019-08762-z.

    Article  CAS  Google Scholar 

  26. Ahmed HE, Yusoff MZ. Impact of delta-winglet pair of vortex generators on the thermal and hydraulic performance of a triangular channel using Al2O3–water nanofluid. J Heat Transf. (2014). https://doi.org/10.1115/1.4025434

  27. Bahiraei M, Jamshidmofid M, Goodarzi M. Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs. J Mol Liq. 2019;1(273):88–98. https://doi.org/10.1016/j.molliq.2018.10.003.

    Article  CAS  Google Scholar 

  28. Tahir S, Mital M. Numerical investigation of laminar nanofluid developing flow and heat transfer in a circular channel. Appl Therm Eng. 2012;1(39):8–14. https://doi.org/10.1016/j.applthermaleng.2012.01.035.

    Article  CAS  Google Scholar 

  29. Bahmani MH, Sheikhzadeh G, Zarringhalam M, Akbari OA, Alrashed AA, Shabani GA, Goodarzi M. Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger. Adv Powder Technol. 2018;29(2):273–82. https://doi.org/10.1016/j.apt.2017.11.013.

    Article  CAS  Google Scholar 

  30. Bagherzadeh SA, Jalali E, Sarafraz MM, Akbari OA, Karimipour A, Goodarzi M, Bach QV. Effects of magnetic field on micro cross jet injection of dispersed nanoparticles in a microchannel. Int J Numer Meth Heat Fluid Flow. 2019. https://doi.org/10.1108/HFF-02-2019-0150.

    Article  Google Scholar 

  31. Pour MS, Nassab SG. Numerical investigation of forced laminar convection flow of nanofluids over a backward facing step under bleeding condition. J Mech. 2012;28(2):N7-12. https://doi.org/10.1017/jmech.2012.45.

    Article  Google Scholar 

  32. Togun H, Safaei MR, Sadri R, Kazi SN, Badarudin A, Hooman K, Sadeghinezhad E. Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step. Appl Math Comput. 2014;15(239):153–70. https://doi.org/10.1016/j.amc.2014.04.051.

    Article  Google Scholar 

  33. Soltani S, Etemad SG, Thibault J. Pool boiling heat transfer of non-Newtonian nanofluids. Int Commun Heat Mass Transf. 2010;37(1):29–33. https://doi.org/10.1016/j.icheatmasstransfer.2009.08.005.

    Article  CAS  Google Scholar 

  34. Hojjat M, Etemad SG, Bagheri R. Laminar heat transfer of non-Newtonian nanofluids in a circular tube. Korean J Chem Eng. 2010;27(5):1391–6. https://doi.org/10.1007/s11814-010-0250-3.

    Article  CAS  Google Scholar 

  35. Hojjat M, Etemad SG, Bagheri R, Thibault J. Rheological characteristics of non-Newtonian nanofluids: experimental investigation. Int Commun Heat Mass Transf. 2011;38(2):144–8. https://doi.org/10.1016/j.icheatmasstransfer.2010.11.019.

    Article  CAS  Google Scholar 

  36. Ghanbari Ashrafi T, Hoseinzadeh S, Sohani A, Shahverdian MH. Applying homotopy perturbation method to provide an analytical solution for Newtonian fluid flow on a porous flat plate. Math Methods Appl Sci. 2021;44(8):7017–30. https://doi.org/10.1002/mma.7238.

    Article  Google Scholar 

  37. Giwa SO, Sharifpur M, Goodarzi M, Alsulami H, Meyer JP. Influence of base fluid, temperature, and concentration on the thermophysical properties of hybrid nanofluids of alumina–ferrofluid: experimental data, modeling through enhanced ANN, ANFIS, and curve fitting. J Therm Anal Calorim. 2021;143(6):4149–67. https://doi.org/10.1007/s10973-020-09372-w.

    Article  CAS  Google Scholar 

  38. Moraveji MK, Haddad SM, Darabi M. Modeling of forced convective heat transfer of a non-Newtonian nanofluid in the horizontal tube under constant heat flux with computational fluid dynamics. Int Commun Heat Mass Transf. 2012;39(7):995–9. https://doi.org/10.1016/j.icheatmasstransfer.2012.05.003.

    Article  CAS  Google Scholar 

  39. Akbari OA, Toghraie D, Karimipour A, Marzban A, Ahmadi GR. The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid. Phys E. 2017;1(86):68–75. https://doi.org/10.1016/j.physe.2016.10.013.

    Article  CAS  Google Scholar 

  40. Rozati SA, Montazerifar F, Ali Akbari O, Hoseinzadeh S, Nikkhah V, Marzban A, Abdolvand H, Goodarzi M. Natural convection heat transfer of water/Ag nanofluid inside an elliptical enclosure with different attack angles. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.7036.

    Article  Google Scholar 

  41. Targui N, Kahalerras H. Analysis of fluid flow and heat transfer in a double pipe heat exchanger with porous structures. Energy Convers Manag. 2008;49(11):3217–29. https://doi.org/10.1016/j.enconman.2008.02.010.

    Article  Google Scholar 

  42. Kefayati GH. Simulation of natural convection and entropy generation of non-Newtonian nanofluid in a porous cavity using Buongiorno’s mathematical model. Int J Heat Mass Transf. 2017;1(112):709–44. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.121.

    Article  CAS  Google Scholar 

  43. Kefayati GH, Sidik NA. Simulation of natural convection and entropy generation of non-Newtonian nanofluid in an inclined cavity using Buongiorno’s mathematical model (Part II, entropy generation). Powder Technol. 2017;1(305):679–703. https://doi.org/10.1016/j.powtec.2016.10.077.

    Article  CAS  Google Scholar 

  44. Bahiraei M, Alighardashi M. Investigating non-Newtonian nanofluid flow in a narrow annulus based on second law of thermodynamics. J Mol Liq. 2016;1(219):117–27. https://doi.org/10.1016/j.molliq.2016.03.007.

    Article  CAS  Google Scholar 

  45. Koo J, Kleinstreuer C. Laminar nanofluid flow in microheat-sinks. Int J Heat Mass Transf. 2005;48(13):2652–61. https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.029.

    Article  CAS  Google Scholar 

  46. Hoseinzadeh S, Sohani A, Shahverdian MH, Shirkhani A, Heyns S. Acquiring an analytical solution and performing a comparative sensitivity analysis for flowing Maxwell upper-convected fluid on a horizontal surface. Therm Sci Eng Prog. 2021;1(23):100901. https://doi.org/10.1016/j.tsep.2021.100901.

    Article  Google Scholar 

  47. Ahmadi AA, Arabbeiki M, Ali HM, Goodarzi M, Safaei MR. Configuration and optimization of a minichannel using water–alumina nanofluid by non-dominated sorting genetic algorithm and response surface method. Nanomaterials. 2020;10(5):901. https://doi.org/10.3390/nano10050901.

    Article  CAS  PubMed Central  Google Scholar 

  48. Peng Y, Parsian A, Khodadadi H, Akbari M, Ghani K, Goodarzi M, Bach QV. Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3–Cu nanoparticles dispersed in ethylene glycol. Phys A. 2020;1(549):124015. https://doi.org/10.1016/j.physa.2019.124015.

    Article  CAS  Google Scholar 

  49. Hosseini SM, Safaei MR, Goodarzi M, Alrashed AA, Nguyen TK. New temperature, interfacial shell dependent dimensionless model for thermal conductivity of nanofluids. Int J Heat Mass Transf. 2017;1(114):207–10. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.061.

    Article  CAS  Google Scholar 

  50. Jordaan H, Stephan Heyns P, Hoseinzadeh S. Numerical development of a coupled one-dimensional/three-dimensional computational fluid dynamics method for thermal analysis with flow maldistribution. J Therm Sci Eng Appl. 2021;13(4):041017. https://doi.org/10.1115/1.4049040.

    Article  CAS  Google Scholar 

  51. Zhao H, Liu Z, Zhang C, Guan N, Zhao H. Pressure drop and friction factor of a rectangular channel with staggered mini pin fins of different shapes. Exp Therm Fluid Sci. 2016;1(71):57–69. https://doi.org/10.1016/j.expthermflusci.2015.10.010.

    Article  Google Scholar 

  52. Hoseinzadeh S, Sohani A, Ashrafi TG. An artificial intelligence-based prediction way to describe flowing a Newtonian liquid/gas on a permeable flat surface. J Therm Anal Calorim. 2021;26:1–7. https://doi.org/10.1007/s10973-021-10811-5.

    Article  CAS  Google Scholar 

  53. Tian Z, Abdollahi A, Shariati M, Amindoust A, Arasteh H, Karimipour A, Goodarzi M, Bach QV. Turbulent flows in a spiral double-pipe heat exchanger: optimal performance conditions using an enhanced genetic algorithm. Int J Numer Meth Heat Fluid Flow. 2019. https://doi.org/10.1108/HFF-04-2019-0287.

    Article  Google Scholar 

  54. Bagherzadeh SA, D’Orazio A, Karimipour A, Goodarzi M, Bach QV. A novel sensitivity analysis model of EANN for F-MWCNTs–Fe3O4/EG nanofluid thermal conductivity: outputs predicted analytically instead of numerically to more accuracy and less costs. Phys A. 2019;1(521):406–15. https://doi.org/10.1016/j.physa.2019.01.048.

    Article  CAS  Google Scholar 

  55. Paul TC, Mahamud R, Khan JA. Multiphase modeling approach for ionic liquids (ILs) based nanofluids: improving the performance of heat transfer fluids (HTFs). Appl Therm Eng. 2019;25(149):165–72. https://doi.org/10.1016/j.applthermaleng.2018.12.039.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Nikian.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderifar, A., Nikian, M., Javaherdeh, K. et al. Numerical investigation of the effect of fins on heat transfer enhancement of a laminar non-Newtonian nanofluid flow through a corrugated channel. J Therm Anal Calorim 147, 9779–9791 (2022). https://doi.org/10.1007/s10973-022-11222-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11222-w

Keywords

Navigation