Skip to main content
Log in

Numerical simulation of combined convection and radiation heat transfer in a hybrid nanofluid inside an open fins cavity under a magnetic field

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study investigates combined heat transfer by convection and radiation of magnetohydrodynamics hybrid nanofluid within an open rectangular enclosure using numerical simulations. The Roseland approximation serves as the basis for incorporating the thermal radiation term into the energy equation. The chosen nanofluid is a hybrid mixture of Al2O3 and MgO nanoparticles suspended in H2O. Thermal behavior within an enclosure is investigated by analyzing temperature distributions and Nusselt number variations on the bottom hot wall under different conditions. The effects of three factors are explored, including values of parameter radiation (Rk), magnetic field strengths, and nanoparticles volume fractions. The key finding is that the highest full heat transfer ratio on the lowest warm fence occurs when there is no magnetic field (Ha = 0), the radiative parameter is the highest (R = 1), and the hybrid nanoparticle concentration is at its highest level (φ = 0.02 Al2O3 + 0.02 MgO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\({\text{Da}}\) :

Darcy number

\({\text{Re}}\) :

Reynolds number

\(K\) :

Permeability (\({{\text{m}}}^{2})\)

\({\text{Nu}}\) :

Nusselt number

\({\text{Pr}}\) :

Prandtl number

\(T\) :

Temperature \((K)\)

\({\text{Ha}}\) :

Hartman number

\({\text{B}}\) :

Magnetic field intensity

\(x,y,z\) :

Coordinates \(({\text{m}})\)

\(u,v,w\) :

Velocity components (m/s)

\(k\) :

Thermal conductivity (\({\text{W}}\,{\text{m}}^{ - 1} \,{\text{K}}^{ - 1}\))

q r :

Radiative heat flux

\(P\) :

The dimensionless fluid pressure

\(\alpha\) :

Effective thermal diffusivity of porous medium and fluid (\({\text{m}}^{2} {\text{s}}^{ - 1}\))

\(\beta\) :

Volumetric thermal expansion coefficient of the fluid (\({\text{K}} ^{ - 1}\))

\(\lambda\) :

Thermal expansion coefficient (\({\text{K}}^{ - 1}\))

\(\varepsilon\) :

Porosity

\(\mu\) :

Dynamic viscosity (\({\text{W}}\,{\text{m}}^{ - 1} \,{\text{K}}^{ - 1}\))

\(\sigma\) :

Electrical conductivity (\(\Omega \,{\text{M}}\))

\(\theta\) :

Non-dimensional temperature

\(\tau\) :

Kinematic diffusivity (\({\text{m}}^{2} \,{\text{s}}^{ - 1}\))

\(\rho\) :

Density (\({\text{kg}}\,{\text{m}}^{ - 3}\))

W:

Wall

\(f\) :

Fluid

\({\text{loc}}\) :

Local

Rd:

Radiative parameter

\(c\) :

Cold

\(h\) :

Hot

\({\text{nf}}\) :

Nanofluid

\(p\) :

Porous medium

L :

Length (m)

References

  1. Turan O, Yigit S, Liang R, Chakraborty N. Laminar mixed convection of power-law fluids in cylindrical enclosures with heated rotating top wall. Int J Heat Mass Transf. 2018;124:885–99.

    Article  Google Scholar 

  2. Loenko DS, Shenoy A, Sheremet MA. Effect of time-dependent wall temperature on natural convection of a non-Newtonian fluid in an enclosure. Int J Therm Sci. 2021;166:106973.

    Article  Google Scholar 

  3. Dutta S, Goswami N, Pati S, Biswas AK. Natural convection heat transfer and entropy generation in a porous rhombic enclosure: influence of non-uniform heating. J Therm Anal Calorim. 2021;144(4):1493–515.

    Article  CAS  Google Scholar 

  4. Sanga PJ, Kumar A, Mishra SK. Numerical investigation of turbulent forced convection flow in a two-dimensional curved surface cavity. Eng Appl Comput Fluid Mech. 2022;16(1):359–73.

    Google Scholar 

  5. Mahmoodabadi MJ, Mahmoodabadi F, Atashafrooz M. Development of the meshless local Petrov-Galerkin method to analyze three-dimensional transient incompressible laminar fluid flow. J Serbian Soc Comput Mech. 2018;12(2):128–52.

    Article  Google Scholar 

  6. Sheikholeslami M, Rokni HB. Numerical simulation for impact of coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Transf. 2018;118:823–31.

    Article  CAS  Google Scholar 

  7. Bhowmick S, Xu F, Molla MM, Saha SC. Chaotic phenomena of natural convection for water in a V-shaped enclosure. Int J Therm Sci. 2022;176:107526.

    Article  Google Scholar 

  8. Atashafrooz M. Effects of Ag-water nanofluid on hydrodynamics and thermal behaviors of three-dimensional separated step flow. Alex Eng J. 2018;57(4):4277–85.

    Article  Google Scholar 

  9. Olabi AG, Wilberforce T, Sayed ET, Elsaid K, Rahman SA, Abdelkareem MA. Geometrical effect coupled with nanofluid on heat transfer enhancement in heat exchangers. Int J Thermofluids. 2021;10:100072.

    Article  CAS  Google Scholar 

  10. Redouane F, Jamshed W, Devi S, Prakash M, Nasir NAAM, Hammouch Z, Eid MR, Nisar KS, Mahammed AB, Abdel-Aty AH, Yahia IS. Heat flow saturate of Ag/MgO-water hybrid nanofluid in heated trigonal enclosure with rotate cylindrical cavity by using Galerkin finite element. Sci Rep. 2022;12(1):1–20.

    Article  Google Scholar 

  11. Waini I, Ishak A, Grosan T, Pop I. Mixed convection of a hybrid nanofluid flow along a vertical surface embedded in a porous medium. Int Commun Heat Mass Transf. 2020;114:104565.

    Article  CAS  Google Scholar 

  12. Talbi N, Kezzar M, Malaver M, Tabet I, Sari MR, Metatla A, Eid MR. Increment of heat transfer by graphene-oxide and molybdenum-disulfide nanoparticles in ethylene glycol solution as working nanofluid in penetrable moveable longitudinal fin. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2026527.

    Article  Google Scholar 

  13. Atashafrooz M, Shafie M. Analysis of entropy generation for mixed convection fluid flow in a trapezoidal enclosure using the modified blocked region method. J Serbian Soc Comput Mech. 2020;14(2):97–116.

    Article  Google Scholar 

  14. Saha S, Biswas P, Das AN, Raut S. Analysis of heat transfer characteristics through an rectangular enclosure. Mater Today Proc. 2021;47:2905–11.

    Article  CAS  Google Scholar 

  15. Desouky AAE, Ismail HNA, Abourabia AM, Ahmed NA. Numerical simulation of MHD flow and heat transfer inside T-shaped cavity by the parallel walls motion. SN Appl Sci. 2020;2(4):1–18.

    Article  Google Scholar 

  16. Narankhishig Z, Ham J, Lee H, Cho H. Convective heat transfer characteristics of nanofluids including the magnetic effect on heat transfer enhancement—a review. Appl Therm Eng. 2021;193:116987.

    Article  CAS  Google Scholar 

  17. Fan F, Qi C, Tu J, Ding Z. Effects of variable magnetic field on particle fouling properties of magnetic nanofluids in a novel thermal exchanger system. Int J Therm Sci. 2022;175:107463.

    Article  CAS  Google Scholar 

  18. Bhatti MM, Ellahi R, Doranehgard MH. Numerical study on the hybrid nanofluid (Co3O4-Go/H2O) flow over a circular elastic surface with non-Darcy medium: application in solar energy. J Mol Liq. 2022;361:119655.

    Article  CAS  Google Scholar 

  19. Zeeshan A, Shehzad N, Atif M, Ellahi R, Sait SM. Electromagnetic flow of SWCNT/MWCNT suspensions in two immiscible water-and engine-oil-based Newtonian fluids through porous media. Symmetry. 2022;14(2):406.

    Article  CAS  Google Scholar 

  20. Ashraf MB, Tanveer A, Ulhaq S. Effects of Cattaneo–Christov heat flux on MHD Jeffery nano fluid flow past a stretching cylinder. J Magn Magn Mater. 2023;565:170154.

    Article  CAS  Google Scholar 

  21. Giwa SO, Sharifpur M, Ahmadi MH, Meyer JP. A review of magnetic field influence on natural convection heat transfer performance of nanofluids in square cavities. J Therm Anal Calorim. 2021;145(5):2581–623.

    Article  CAS  Google Scholar 

  22. Chabani I, Mebarek-Oudina F, Ismail AAI. MHD flow of a hybrid nano-fluid in a triangular enclosure with zigzags and an elliptic obstacle. Micromachines. 2022;13(2):224.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liao CC, Li WK, Chu CC. Analysis of heat transfer transition of thermally driven flow within a square enclosure under effects of inclined magnetic field. Int Commun Heat Mass Transfer. 2022;130:105817.

    Article  Google Scholar 

  24. Rashidi MM, Sadri M, Sheremet MA. Numerical simulation of hybrid nanofluid mixed convection in a lid-driven square cavity with magnetic field using high-order compact scheme. Nanomaterials. 2021;11(9):2250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yan SR, Kalbasi R, Parvin A, Tian XX, Karimipour A. Comparison of Nusselt number and stream function in tall and narrow enclosures in the mixed convection of hybrid nanofluid. J Therm Anal Calorim. 2021;143(2):1599–609.

    Article  CAS  Google Scholar 

  26. Fu C, Rahmani A, Suksatan W, Alizadeh SM, Zarringhalam M, Chupradit S, Toghraie D. Comprehensive Investigations of mixed convection of Fe–ethylene-glycol nanofluid inside an enclosure with different obstacles using lattice Boltzmann method. Sci Rep. 2021;11(1):1–16.

    Article  CAS  Google Scholar 

  27. Rostami AK, Hosseinzadeh K, Ganji DD. Hydrothermal analysis of ethylene glycol nanofluid in a porous enclosure with complex snowflake shaped inner wall. Waves Random Complex Media. 2022;32(1):1–18.

    Article  Google Scholar 

  28. Acharya N. Magnetized hybrid nanofluid flow within a cube fitted with circular cylinder and its different thermal boundary conditions. J Magn Magn Mater. 2022;564:170167.

    Article  CAS  Google Scholar 

  29. Liu Y, et al. Numerical investigation on the thermal performance of a double-layer window with low-emissivity coatings. Energy Build. 2014;82:22–30.

    Google Scholar 

  30. Chinnappan A, et al. Numerical investigation on the thermal performance of a heat pipe-based solar collector using nanofluid. Int J Therm Sci. 2015;95:69–79.

    Google Scholar 

  31. Oztop HF, et al. Numerical and experimental investigation of a latent heat storage system using spherical capsules. Appl Therm Eng. 2012;47:125–33.

    Google Scholar 

  32. Chammam H, et al. Effects of thermal radiation on MHD free convection of Fe3O4−H2O nanofluid inside a complex enclosure using finite element method. J Mol Liq. 2017;225:37–45.

    Google Scholar 

  33. Amina B, Miloud A, Samir L, et al. Heat transfer enhancement in a parabolic trough solar receiver using longitudinal fins and nanofluids. J Therm Sci. 2016;25:410–7.

    Article  CAS  Google Scholar 

  34. Ahmad I, Zahid H, Ahmad F, Raja MAZ, Baleanu D. Design of computational intelligent procedure for thermal analysis of porous fin model. Chin J Phys. 2019;59:641–55. https://doi.org/10.1016/j.cjph.2019.04.015.

    Article  Google Scholar 

  35. Waseem W, Sulaiman M, Islam S, Kumam P, Nawaz R, Raja MAZ, Faroo M, Shoaib M. A study of changes in temperature profile of porous fin model using cuckoo search algorithm. Alex Eng J. 2020;59(1):11–24. https://doi.org/10.1016/j.aej.2019.12.001.

    Article  Google Scholar 

  36. Fallah Najafabadi M, Talebi Rostami H, Hosseinzadeh K, Domiri Ganji D. Thermal analysis of a moving fin using the radial basis function approximation. Heat Transf. 2021;50(8):7553–67. https://doi.org/10.1002/htj.22242.

    Article  Google Scholar 

  37. Umrao Sarwe D, Kulkarni VS. Differential transformation method to determine heat transfer in annular fins. Heat Transf. 2021;50(8):7949–71. https://doi.org/10.1002/htj.22261.

    Article  Google Scholar 

  38. Turkyilmazoglu M. Thermal management of parabolic pin fin subjected to a uniform oncoming airflow: optimum fin dimensions. J Therm Anal Calorim. 2021;143(5):3731–9. https://doi.org/10.1007/s10973-020-10382-x.

    Article  CAS  Google Scholar 

  39. Sowmya G, Varun Kumar RS, Alsulami MD, Prasannakumara BC. Thermal stress and temperature distribution of an annular fin with variable temperature-dependent thermal properties and magnetic field using DTM Pade approximant. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2039421.

    Article  Google Scholar 

  40. Hosseinzadeh S, Hosseinzadeh K, Hasibi A, Ganji DD. Thermal analysis of moving porous fin wetted by hybrid nanofluid with trapezoidal, concave parabolic and convex cross sections. Case Stud Therm Eng. 2022. https://doi.org/10.1016/j.csite.2022.101757.

    Article  Google Scholar 

  41. Gireesha BJ, Sowmya G, Khan MI, Öztop HF. Flow of hybrid nanofluid across a permeable longitudinal moving fin along with thermal radiation and natural convection. Comput Methods Progr Biomed. 2020. https://doi.org/10.1016/j.cmpb.2019.105166.

    Article  Google Scholar 

  42. Manohar GR, Venkatesh P, Gireesha BJ, Madhukesh JK, Ramesh GK. Dynamics of hybrid nanofluid through a semi spherical porous fin with internal heat generation. Partial Differ Equ Appl Math. 2021. https://doi.org/10.1016/j.padiff.2021.100150.

    Article  Google Scholar 

  43. Abdulrahman A, Gamaoun F, Varun Kumar RS, Khan U, Gill HS, Nagaraja KV, Eldin SM, Galal AM. Study of thermal variation in a longitudinal exponential porous fin wetted with TiO2−SiO2/hexanol hybrid nanofluid using hybrid residual power series method. Case Stud Therm Eng. 2023. https://doi.org/10.1016/j.csite.2023.102777.

    Article  Google Scholar 

  44. Guo ZL, Zhao TS. Lattice Boltzmann model for incompressible flows through porous media. Phys Rev E. 2002;66:036304.

    Article  Google Scholar 

  45. Jourabian M, Farhadi M, Rabienataj Darzi AA. Constrained ice melting around one cylinder in horizontal cavity accelerated using three heat transfer enhancement techniques. Int J Therm Sci. 2018;125:231–47.

    Article  CAS  Google Scholar 

  46. Jourabian M, Farhadi M, Rabienataj Darzi AA. Accelerated melting of PCM in a multitube annulus type thermal storage unit using lattice Boltzmann simulation. Heat Transf Asian Res. 2017;46(8):1499–525.

    Article  Google Scholar 

  47. Sreedevi P, Reddy PS. Effect of magnetic field and thermal radiation on natural convection in a square cavity filled with TiO2 nanoparticles using Tiwari–Das nanofluid model. Alex Eng J. 2022;61(2):1529–41.

    Article  Google Scholar 

  48. Ghalambaz M, Sabour M, Pop I. Free convection in a square cavity filled by a porous medium saturated by a nanofluid: viscous dissipation and radiation effects. Eng Sci Technol Int J. 2016;19(3):1244–53.

    Google Scholar 

  49. Zabihi M, Lari K, Amiri H. Coupled radiative-conductive heat transfer problems in complex geometries using embedded boundary method. J Braz Soc Mech Sci Eng. 2017;39(7):2847–64.

    Article  CAS  Google Scholar 

  50. Chamkha AJ, Abu-Nada E. Mixed convection flow in single-and double-lid driven square cavities filled with water–Al2O3 nanofluid: effect of viscosity models. Eur J Mech B/Fluids. 2012;36:82–96.

    Article  Google Scholar 

  51. Selimefendigil F, Şenol G, Öztop HF, et al. A review on non-newtonian nanofluid applications for convection in cavities under magnetic field. Symmetry. 2022;15(1):41.

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from DGRSDT projects (B00L02UN480120230001), ALGERIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fares Redouane.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redouane, F., Rachid, H. & Abdelkader, A. Numerical simulation of combined convection and radiation heat transfer in a hybrid nanofluid inside an open fins cavity under a magnetic field. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13158-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13158-9

Keywords

Navigation