Skip to main content
Log in

On the Cheeger problem for rotationally invariant domains

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We investigate the properties of the Cheeger sets of rotationally invariant, bounded domains \(\Omega \subset \mathbb {R}^n\). For a rotationally invariant Cheeger set C, the free boundary \(\partial C \cap \Omega \) consists of pieces of Delaunay surfaces, which are rotationally invariant surfaces of constant mean curvature. We show that if \(\Omega \) is convex, then the free boundary of C consists only of pieces of spheres and nodoids. This result remains valid for nonconvex domains when the generating curve of C is closed, convex, and of class \(\mathcal {C}^{1,1}\). Moreover, we provide numerical evidence of the fact that, for general nonconvex domains, pieces of unduloids or cylinders can also appear in the free boundary of C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Although the paper [25] deals with rotationally invariant, strictly convex domains, the convexity assumption is not used in the proof of [25, Lemma 3.1].

References

  1. Alter, F., Caselles, V.: Uniqueness of the Cheeger set of a convex body. Nonlinear Anal. 70(1), 32–44 (2009). https://doi.org/10.1016/j.na.2007.11.032

    Article  MathSciNet  MATH  Google Scholar 

  2. Alter, F., Caselles, V., Chambolle, A.: A characterization of convex calibrable sets in \(\mathbb{R}^N\). Math. Ann. 332(2), 329–366 (2005). https://doi.org/10.1007/s00208-004-0628-9

    Article  MathSciNet  MATH  Google Scholar 

  3. Aberra, D., Agrawal, K.: Surfaces of revolution in \(n\) dimensions. Int. J. Math. Ed. Sci. Technol. 38(6), 843–851 (2007). https://doi.org/10.1080/00207390701359388

    Article  MathSciNet  Google Scholar 

  4. Bellettini, G., Caselles, V., Novaga, M.: Explicit solutions of the eigenvalue problem \(-\text{ div }(Du/|Du|)=u\) in \(R^2\). SIAM J. Math. Anal. 36(4), 1095–1129 (2005). https://doi.org/10.1137/S0036141003430007

    Article  MathSciNet  MATH  Google Scholar 

  5. Bobkov, V., Parini, E.: On the higher Cheeger problem. J. Lond. Math. Soc. (2) 97(3), 575–600 (2018). https://doi.org/10.1112/jlms.12119

    Article  MathSciNet  MATH  Google Scholar 

  6. Caselles, V., Chambolle, A., Novaga, M.: Some remarks on uniqueness and regularity of Cheeger sets. Rend. Semin. Mat. Univ. Padova 123, 191–201 (2010). https://doi.org/10.4171/RSMUP/123-9

    Article  MathSciNet  MATH  Google Scholar 

  7. Dalphin, J., Henrot, A., Masnou, S., Takahashi, T.: On the minimization of total mean curvature. J. Geom. Anal. 26(4), 2729–2750 (2016). https://doi.org/10.1007/s12220-015-9646-y

    Article  MathSciNet  MATH  Google Scholar 

  8. Demengel, F.: Functions locally almost \(1\)-harmonic. Appl. Anal. 83(9), 865–896 (2004). https://doi.org/10.1080/00036810310001621369

    Article  MathSciNet  MATH  Google Scholar 

  9. Gonzalez, E., Massari, U., Tamanini, I.: On the regularity of boundaries of sets minimizing perimeter with a volume constraint. Indiana Univ. Math. J. 32(1), 25–37 (1983). https://www.jstor.org/stable/24893183

  10. Hsiang, W.Y., Yu, W.C.: A generalization of a theorem of Delaunay. J. Differ. Geom. 16(2), 161–177 (1981). https://doi.org/10.4310/jdg/1214436094

    Article  MathSciNet  MATH  Google Scholar 

  11. Hutchings, M., Morgan, F., Ritoré, M., Ros, A.: Proof of the double bubble conjecture. Ann. Math. (2) 155(2), 459–489 (2002). https://doi.org/10.2307/3062123

    Article  MathSciNet  MATH  Google Scholar 

  12. Ionescu, I.R., Lachand-Robert, T.: Generalized Cheeger sets related to landslides. Calc. Var. Part. Differ. Equ. 23(2), 227–249 (2005). https://doi.org/10.1007/s00526-004-0300-y

    Article  MathSciNet  MATH  Google Scholar 

  13. Kawohl, B.: Two dimensions are easier. Arch. Math. (Basel) 107(4), 423–428 (2016). https://doi.org/10.1007/s00013-016-0953-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Kawohl, B., Fridman, V.: Isoperimetric estimates for the first eigenvalue of the \(p\)-Laplace operator and the Cheeger constant. Comment. Math. Univ. Carolin. 44(4), 659–667 (2003), http://dml.cz/dmlcz/119420

  15. Kawohl, B., Lachand-Robert, T.: Characterization of Cheeger sets for convex subsets of the plane. Pac. J. Math. 225(1), 103–118 (2006). https://doi.org/10.2140/pjm.2006.225.103

    Article  MathSciNet  MATH  Google Scholar 

  16. Kenmotsu, K.: Surfaces of revolution with prescribed mean curvature. Tôhoku Math. J. 32(1), 147–153 (1980). https://doi.org/10.2748/tmj/1178229688

    Article  MathSciNet  MATH  Google Scholar 

  17. Krejčiřík, D., Leonardi, G.P., Vlachopulos, P.: The Cheeger constant of curved tubes. Arch. Math. (Basel) 112(4), 429–436 (2019). https://doi.org/10.1007/s00013-018-1282-x

    Article  MathSciNet  MATH  Google Scholar 

  18. Krejčiřík, D., Pratelli, A.: The Cheeger constant of curved strips. Pac. J. Math. 254(2), 309–333 (2011). https://doi.org/10.2140/pjm.2011.254.309

    Article  MathSciNet  MATH  Google Scholar 

  19. Leonardi, G.P.: An overview on the Cheeger problem. New trends in shape optimization, pp. 117–139, Internat. Ser. Numer. Math., vol. 166, Birkhäuser/Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17563-8_6

  20. Leonardi, G.P., Pratelli, A.: On the Cheeger sets in strips and non-convex domains. Calc. Var. Part. Differ. Equ. 55, no. 1, Art. 15 (2016). https://doi.org/10.1007/s00526-016-0953-3

  21. Leonardi, G.P., Neumayer, R., Saracco, G.: The Cheeger constant of a Jordan domain without necks. Calc. Var. Part. Differ. Equ. 56(6), Art. 164 (2017). https://doi.org/10.1007/s00526-017-1263-0

  22. Maderna, C., Salsa, S.: Sharp estimates of solutions to a certain type of singular elliptic boundary value problems in two dimensions. Appl. Anal. 12(4), 307–321 (1981). https://doi.org/10.1080/00036818108839370

    Article  MathSciNet  MATH  Google Scholar 

  23. Maggi, F.: Sets of finite perimeter and geometric variational problems. An introduction to geometric measure theory. Cambridge Studies in Advanced Mathematics, vol. 135. Cambridge University Press, Cambridge (2012). https://doi.org/10.1017/CBO9781139108133

  24. Parini, E.: An introduction to the Cheeger problem. Surv. Math. Appl. 6, 9–21 (2011). http://www.emis.ams.org/journals/SMA/v06/p02.pdf

  25. Rosales, C.: Isoperimetric regions in rotationally symmetric convex bodies. Indiana Univ. Math. J. 52(5), 1201–1214 (2003). https://www.jstor.org/stable/24903444

  26. Stredulinsky, E., Ziemer, W.: Area minimizing sets subject to a volume constraint in a convex set. J. Geom. Anal. 7(4), 653–677 (1997). https://doi.org/10.1007/BF02921639

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The essential part of the present research was performed during a visit of E.P. at the University of West Bohemia and a visit of V.B. at Aix-Marseille University. The authors wish to thank the hosting institutions for the invitation and the kind hospitality. V.B. was supported by the Project LO1506 of the Czech Ministry of Education, Youth and Sports, and by the Grant 18-03253S of the Grant Agency of the Czech Republic. The authors also wish to thank the anonymous reviewer for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Bobkov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobkov, V., Parini, E. On the Cheeger problem for rotationally invariant domains. manuscripta math. 166, 503–522 (2021). https://doi.org/10.1007/s00229-020-01260-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-020-01260-9

Mathematics Subject Classification

Navigation