Skip to main content
Log in

Abstract.

We study the maximization problem, among all subsets X of a given domain \(\Omega\), of the quotient of the integral in X of a given function f by the integral on the boundary of X of another function g. This is a generalization of the well-known Cheeger problem corresponding to constant functions f,g. The non-constant case is motivated by applications to landslides modeling where the the supremum given by a variational blocking problem appears as a safety coefficient. We prove that this coefficient is equal to the supremum of the shape optimization problem formerly mentioned. For constant data, this amounts to studying the first eigenvalue of the 1-laplacian operator.

We prove existence of optimal sets, and give some differential characterization of their internal boundary. We study their symmetry properties using the Steiner symmetrization. In dimension two, we give explicit solutions for data depending only on one variable.

Résumé.

Nous étudions le probléme de maximisation, parmi les ensembles X inclus dans un domaine fixé \(\Omega\), du quotient de l’intégrale d’une fonction donnée f dans X par l’intégrale d’une autre fonction g sur le bord de X. Il s’agit donc d’une généralisation du célébre probléme de Cheeger (correspondant au cas f, g, constants). Le cas non-constant est motivé par des applications aux glissements de terrain, oú le supremum donné par un probléme variationnel de blocage, apparaít comme un coefficient de sreté. Nous démontrons que ce coefficient est égal á l’optimum du probléme d’optimisation de formes mentionné précédemment. Dans le cas de données constantes, cela revient á étudier la premiére valeur propre de l’opérateur 1-laplacien.

Nous démontrons l’existence d’ensembles optimaux, et donnons une caractérisation différentielle de leur bord intérieur. Nous étudions leur symétrie á l’aide de la symétrisation de Steiner. En dimension deux, nous exhibons des solutions explicites dans le cas oú les données ne dépendent que d’une variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Buttazzo, G.: An optimal design problem with perimeter penalization. Calc. Var. 1, 55-69 (1993)

    Google Scholar 

  2. Bucur, D., Zolésio, J.-P.: Boundary optimization under pseudo curvature constraint. Ann. Scuola Norm. Sup. Pisa (4) 23, 681-699 (1996)

    Google Scholar 

  3. Buser, P.: A note on the isoperimetric constant. Ann. Sci. École Norm. Sup. (4) 15, 213-230 (1982)

    Google Scholar 

  4. Cazacu, O., Cristescu, N.: Constitutive model and analysis of creep flow of natural slopes. Italian Geotechnical Journal 34, 44-54 (2000)

    Google Scholar 

  5. Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Gunning, R.C. (ed.) Problems in Analysis, A Symposium in Honor of Salomon Bochner, pp. 195-199. Princeton Univ. Press 1970

  6. Cristescu, N., Cazacu, O., Cristescu, C.: A model for landslides. Canadian Geotechnical Journal 39, 924-937 (2002)

    Google Scholar 

  7. Demengel, F.: On some nonlinear equation involving the 1-Laplacian and trace map inequalities. Nonlinear Anal., Theory Methods Appl. 48A 8, 1151-1163 (2002)

    Google Scholar 

  8. Demengel, F.: Théorémes d’existence pour des équations avec l’opérateur “1-Laplacien”, premiére valeur propre pour \(-\Delta_1\): Some existence results for partial differential equations involving the 1-Laplacian: Eigenvalues for \(-\Delta_1\). Comptes Rendus Mathématiques 334, 1071-1076 (2002)

    Google Scholar 

  9. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. CRC Press Inc. 1992

  10. Hassani, R., Ionescu, I., Lachand-Robert, T.: Shape optimization and supremal minimization approaches in landslides modelling, submitted

  11. Henrot A., Pierre M.: Optimisation de forme. (In preparation)

  12. Hild P., Ionescu I.R., Lachand-Robert T., Rosca I.: The blocking of an inhomogeneous Bingham fluid. Applications to landslides. M2AN 36, 1013-1026 (2002)

  13. Kawohl, B.: Rearrangements and convexity of level sets in PDE. Lectures Notes in Math. 1150. New York, Springer 1985

  14. Kawohl, B.: On a family of torsional creep problems. J. reine angew. Math. 410, 1-22 (1990)

    Google Scholar 

  15. Kawohl, B., Fridman, V.: Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant. Comm. Mat. Univ. Carol. (to appear)

  16. Matei, A.-M.: First eigenvalue for the p-Laplace operator. Nonlinear Anal., Theory Methods Appl. 39A, 1051-1068 (2000)

    Google Scholar 

  17. Simon, J.: Differential with respect to the domain in boundary value problems. Num. Funct. Anal. Optimz 2, 649-687 (1980)

    Google Scholar 

  18. Vol’pert, A.I.: Spaces BV and quasi-linear equations. Math. USSR Sb. 17, 225-267 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan R. Ionescu.

Additional information

Received: 18 June 2004, Accepted: 12 July 2004, Published online: 10 December 2004

Mathematics Subject Classification (2000):

49J40, 49Q10

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ionescu, I.R., Lachand-Robert, T. Generalized Cheeger sets related to landslides. Calc. Var. 23, 227–249 (2005). https://doi.org/10.1007/s00526-004-0300-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-004-0300-y

Keywords

Navigation