Skip to main content
Log in

The Cheeger constant of curved tubes

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We compute the Cheeger constant of tubular neighbourhoods of complete curves in an arbitrary dimensional Euclidean space and raise a question about curved spherical shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anoop, T.V., Bobkov, V., Sasi, S.: On the strict monotonicity of the first eigenvalue of the \(p\)-Laplacian on annuli. Trans. Am. Math. Soc. 370, 7181–7199 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellettini, G., Caselles, V., Novaga, M.: The total variation flow in \(\mathbb{R}^N\). J. Differ. Equ. 184, 475–525 (2002)

    Article  MATH  Google Scholar 

  3. Bishop, R.L.: There is more than one way to frame a curve. Am. Math. Monthly 82, 246–251 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bueno, H., Ercole, G.: Solutions of the Cheeger problem via torsion functions. J. Math. Anal. Appl. 381, 263–279 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Demengel, F.: Functions locally almost 1-harmonic. Appl. Anal. 83, 865–896 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gray, A.: Tubes. Addison-Wesley, New York (1990)

    MATH  Google Scholar 

  7. Grieser, D.: The first eigenvalue of the Laplacian, isoperimetric constants, and the Max Flow Min Cut Theorem. Arch. Math. 87, 75–85 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kawohl, B.: Two dimensions are easier. Arch. Math. 107, 423–428 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kawohl, B., Fridman, V.: Isoperimetric estimates for the first eigenvalue of the \(p\)-Laplace operator and the Cheeger constant. Comment. Math. Univ. Carol. 44, 659–667 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Kawohl, B., Lachand-Robert, T.: Characterization of Cheeger sets for convex subsets of the plane. Pac. J. Math. 225, 103–118 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kawohl, B., Schuricht, F.: First eigenfunctions of the \(1\)-Laplacian are viscosity solutions. Commun. Pure Appl. Anal. 14, 329–339 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krejčiřík, D., Pratelli, A.: The Cheeger constant of curved strips. Pac. J. Math. 254, 309–333 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Leonardi, G.P.: An Overview on the Cheeger Problem. New Trends in Shape Optimization. International Series of Numerical Mathematics, vol. 166, pp. 117–139. Springer, New York (2015)

    Book  Google Scholar 

  14. Leonardi, G.P., Pratelli, A.: On the Cheeger sets in strips and non-convex domains. Calc. Var. Partial Differ. Equ. 55(15), 1–28 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Leonardi, G.P., Neumayer, R., Saracco, G.: The Cheeger constant of a Jordan domain without necks. Calc. Var. Partial Differ. Equ. 56(164), 1–29 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Leonardi, G.P., Saracco, G.: Two examples of minimal Cheeger sets in the plane. Ann. Mat. Pura Appl. 197(5), 1511–1531 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  18. Parini, E.: An introduction to the Cheeger problem. Surv. Math. Appl. 6, 9–22 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to Vladimir Bobkov for pointing out to us the references [4,5]. The research of D.K. was partially supported by the GACR Grant No. 18-08835S and by FCT (Portugal) through project PTDC/MATCAL/4334/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Krejčiřík.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krejčiřík, D., Leonardi, G.P. & Vlachopulos, P. The Cheeger constant of curved tubes. Arch. Math. 112, 429–436 (2019). https://doi.org/10.1007/s00013-018-1282-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-018-1282-x

Keywords

Mathematics Subject Classification

Navigation