Skip to main content
Log in

Enantioselective pharmacokinetics of tramadol in CYP2D6 extensive and poor metabolizers

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

To describe in detail the intravenous, single oral and multiple oral dose enantioselective pharmacokinetics of tramadol in CYP2D6 extensive metabolizers (EMs) and poor metabolizers (PMs).

Methods

Eight EMs and eight PMs conducted three phases as an open-label cross-over trial with different formulations; 150 mg single oral tramadol hydrochloride, 50 mg single oral tramadol hydrochloride every 8 h for 48 h (steady state), 100 mg intravenous tramadol hydrochloride. Urine and plasma concentrations of (+/−)-tramadol and (+/−)-M1 were determined for 48 h after administration.

Results

In all three phases, there were significant differences between EMs and PMs in AUC and t1/2 of (+)-tramadol (P≤0.0015), (−)-tramadol (P≤0.0062), (+)-M1 (P≤0.0198) and (−)-M1 (P≤0.0370), and significant differences in Cmax of (+)-M1 (P<0.0001) and (−)-M1 (P≤0.0010). In Phase A and C, significant differences in tmax were seen for (+)-M1 (P≤0.0200). There were no statistical differences between the absolute bioavailability of tramadol in EMs and PMs. The urinary recoveries of (+)-tramadol, (−)-tramadol, (+)-M1 and (−)-M1 were statistically significantly different in EMs and PMs (P<0.05). Median antimodes of the urinary metabolic ratios of (+)-tramadol / (+)-M1 and (−)-M1 were 5.0 and 1.5, respectively, hereby clearly separating EMs and PMs in all three phases.

Conclusion

The impact of CYP2D6 phenotype on tramadol pharmacokinetics was similar after single oral, multiple oral and intravenous administration displaying significant pharmacokinetic differences between EMs and PMs of (+)-tramadol, (−)-tramadol, -(+)-M1 and (−)-M1. The O-demethylation of tramadol was catalysed stereospecific by CYP2D6 in the way that very little (+)-M1 was produced in PMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Frankus E, Friderichs E, Kim SM, Osterloh G (1978) On separation of isomeres, structural elucidation and pharmacological characterization of 1-(m-methoxyphenyl)-2-(dimethylaminomethyl)-cyclohexan-1-ol. Arzneimittelforschung 28:114–121

    PubMed  CAS  Google Scholar 

  2. Shipton EA (2000) Tramadol - present and future. Anaesth Intensive Care 28:363–374

    PubMed  CAS  Google Scholar 

  3. Wu WN, Mckown LA, Liao S (2002) Metabolism of the analgesic drug ULTRAM (R) (tramadol hydrochloride) in humans: API-MS and MS/MS characterization of metabolites. Xenobiotica 32:411–425

    Article  PubMed  CAS  Google Scholar 

  4. Lintz W, Erlacin S, Frankus E, Uragg H (1981) Biotransformation of tramadol in man and animal. Arzneimittelforschung 31:1932–1943

    PubMed  CAS  Google Scholar 

  5. Subrahmanyam V, Renwick AB, Walters DG, Young PJ, Price RJ, Tonelli AP et al (2001) Identification of cytochrome P-450 isoforms responsible for cis-tramadol metabolism in human liver microsomes. Drug Metab Dispos 29:1146–1155

    PubMed  CAS  Google Scholar 

  6. Raffa RB, Friderichs E, Reimann W, Shank RP, Codd EE, Vaught JL (1992) Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an atypical opioid analgesic. J of Pharmacol Exp Ther 260:275–285

    CAS  Google Scholar 

  7. Grond S, Sablotzki A (2004) Clinical pharmacology of tramadol. Clin Pharmacokinetics 43:879–923

    Article  CAS  Google Scholar 

  8. Gillen C, Haurand M, Kobelt DJ, Wnendt S (2000) Affinity, potency and efficacy of tramadol and its metabolites at the cloned human mu-opioid receptor. Naunyn-Schmiedebergs Arch Pharmacol 362:116–21. DOI 10.1007/s002100000266

    Article  PubMed  CAS  Google Scholar 

  9. Lai J, Ma SW, Porreca F, Raffa RB (1996) Tramadol, M1 metabolite and enantiomer affinities for cloned human opioid receptors expressed in transfected HN9.10 neuroblastoma cells. Eur J Pharmacol 316:369–732

    Article  PubMed  CAS  Google Scholar 

  10. Raffa RB, Friderichs E, Reimann W, Shank RP, Codd EE, Vaught JL et al (1993) Complementary and synergistic antinociceptive interaction between the enantiomers of tramadol. J of Pharmacol Exp Ther 267:331–340

    CAS  Google Scholar 

  11. Bamigbade TA, Davidson C, Langford RM, Stamford JA (1997) Actions of tramadol, its enantiomers and principal metabolite, O-desmethyltramadol, on serotonin (5-HT) efflux and uptake in the rat dorsal raphe nucleus. Br J Anaesth 79:352–356

    PubMed  CAS  Google Scholar 

  12. Halfpenny DM, Callado LF, Hopwood SE, Bamigbade TA, Langford RM, Stamford JA (1999) Effects of tramadol stereoisomers on norepinephrine efflux and uptake in the rat locus coeruleus measured by real time voltammetry. Br J Anaesth 83:909–915

    PubMed  CAS  Google Scholar 

  13. Bradford LD (2002) CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 3:229–243

    Article  PubMed  CAS  Google Scholar 

  14. Halling J, Petersen M, Damkier P, Nielsen F, Grandjean P, Weihe P et al (2005) Polymorphism of Cyp2D6, Cyp2C19, Cyp2C9 and Cyp2C8 in the Faroese population. Eur J Clin Pharmacol 61:491–497. DOI 10.1007/s00228-005-0938-1

    Article  PubMed  CAS  Google Scholar 

  15. Paar WD, Poche S, Gerloff J, Dengler HJ (1997) Polymorphic CYP2D6 mediates O-demethylation of the opioid analgesic tramadol. Eur J Clin Pharmacol 53:235–239

    Article  PubMed  CAS  Google Scholar 

  16. Poulsen L, Arendt-Nielsen L, Brosen K, Sindrup SH (1996) The hypoalgesic effect of tramadol in relation to CYP2D6. Clin Pharmacol Ther 60:636–644

    Article  PubMed  CAS  Google Scholar 

  17. Pedersen RS, Brosen K, Nielsen F (2003) Enantioselective HPLC method for quantitative determination of tramadol and O–desmethyltramadol in plasma and urine: application to clinical studies. Chromatographia 57:279–285

    Article  CAS  Google Scholar 

  18. Pedersen RS, Damkier P, Brosen K (2005) Tramadol as a new probe for cytochrome P450 2D6 phenotyping: apopulation study. Clin Pharmacol Ther 77:458–67. DOI 10.1016/j.clpt.2005.01.014

    Article  PubMed  CAS  Google Scholar 

  19. Laugesen S, Enggaard TP, Pedersen RS, Sindrup SH, Brosen K (2005) Paroxetine, a cytochrome P450 2D6 inhibitor, diminishes the stereoselective O-demethylation and reduces the hypoalgesic effect of tramadol. Clin Pharmacol Ther 77:312–323

    Article  PubMed  CAS  Google Scholar 

  20. Fliegert F, Kurth B, Gohler K (2005) The effects of tramadol on static and dynamic pupillometry in healthy subjects-the relationship between pharmacodynamics, pharmacokinetics and CYP2D6 metaboliser status. Eur J Clin Pharmacol 61:257–266. DOI 10.1007/s00228–005–0920–y

    Article  PubMed  CAS  Google Scholar 

  21. Stamer UM, Lehnen K, Hothker F, Bayerer B, Wolf S, Hoeft A et al (2003) Impact of CYP2D6 genotype on postoperative tramadol analgesia. Pain 105:231–238. DOI 10.1016/S0304-3959(03)00212-4

    Article  PubMed  CAS  Google Scholar 

  22. Schellens JHM, Vanderwart HHF, Hoevers JW, Breimer DD (1988) Gas-chromatographic determination of sparteine and 2-Dehydrosparteine and 5-Dehydrosparteine in plasma and urine. J Chromatogr - Biomedical Applications 431:203–209

    Article  CAS  Google Scholar 

  23. Brosen K, Otton SV, Gram LF (1985) Sparteine oxidation polymorphism in Denmark. Acta Pharmacol Toxicol 57:357–360

    Article  CAS  Google Scholar 

  24. Kagimoto M, Heim M, Kagimoto K, Zeugin T, Meyer UA (1990) Multiple mutations of the human cytochrome-P450Iid6 gene (Cyp2D6) in poor metabolizers of debrisoquine - study of the functional-significance of individual mutations by expression of chimeric genes. J Biol Chem 265:17209–17214

    PubMed  CAS  Google Scholar 

  25. Marez D, Legrand M, Sabbagh N, LoGuidice JM, Spire C, Lafitte JJ et al (1997) Polymorphism of the cytochrome P450 CYP2D6 gene in a European population: characterization of 48 mutations and 53 alleles, their frequencies and evolution. Pharmacogenetics 7:193–202

    Article  PubMed  CAS  Google Scholar 

  26. Hanioka N, Kimura S, Meyer UA, Gonzalez FJ (1990) The human Cyp2D locus associated with a common genetic-defect in drug oxidation: a G1934–A base change in intron-3 of a mutant Cyp2D6 allele results in an aberrant-3′ splice recognition site. Am J Hum Genet 47:994–1001

    PubMed  CAS  Google Scholar 

  27. Gough AC, Miles JS, Spurr NK, Moss JE, Gaedigk A, Eichelbaum M et al (1990) Identification of the primary gene defect at the cytochrome-P450 Cyp2D locus. Nature 347:773–776

    Article  PubMed  CAS  Google Scholar 

  28. Evert B, Griese EU, Eichelbaum M (1994) Cloning and sequencing of a new nonfunctional Cyp2D6 allele - deletion of T-1795 in exon-3 generates a premature stop codon. Pharmacogenetics 4:271–274

    Article  PubMed  CAS  Google Scholar 

  29. Daly AK, Leathart JBS, London SJ, Idle JR (1995) An inactive cytochrome-P450 Cyp2D6 allele containing a deletion and a base substitution. Hum Genet 95:337–341

    Article  Google Scholar 

  30. Saxena R, Shaw GL, Relling MV, Frame JN, Moir DT, Evans WE et al (1994) Identification of a new variant Cyp2D6 allele with a single-base deletion in exon-3 and its association with the poor metabolizer phenotype. Hum Mol Genet 3:923–926

    Article  PubMed  CAS  Google Scholar 

  31. Tyndale R, Aoyama T, Broly F, Matsunaga T, Inaba T, Kalow W et al (1991) Identification of a new variant Cyp2D6 allele lacking the codon encoding Lys-281-possible association with the poor metabolizer phenotypee. Pharmacogenetics 1:26–32

    Article  PubMed  CAS  Google Scholar 

  32. Broly F, Meyer UA (1993) Debrisoquine oxidation polymorphism - phenotypic consequences of a 3-base-pair deletion in exon 5 of the Cyp2D6 gene. Pharmacogenetics 3:123–130

    Article  PubMed  CAS  Google Scholar 

  33. Lintz W, Barth H, Becker R, Frankus E, Schmidt-Bothelt E (1998) Pharmacokinetics of tramadol and bioavailability of enteral tramadol formulations-2nd communication: drops with ethanol. Arzneimittelforschung 48:436–445

    PubMed  CAS  Google Scholar 

  34. Lintz W, Barth H, Osterloh G, Schmidtbothelt E (1986) Bioavailability of enteral tramadol formulations. 1. Capsules. Arzneimittelforschung 36–2:1278–1283

    Google Scholar 

  35. Lintz W, Barth H, Osterloh G, Schmidt-Bothelt E (1998) Pharmacokinetics of tramadol and bioavailability of enteral tramadol formulations, 3rd communication: suppositories. Arzneimittelforschung 48:889–899

    PubMed  CAS  Google Scholar 

  36. Enggaard TP, Poulsen L, Arendt-Nielsen L, Brosen K, Ossig J, Sindrup SH (20061) The analgesic effect of tramadol after intravenous injection in healthy volunteers in relation to CYP2D6. Anesth Analg 102:146–150. DOI 10.1213/01.ane.0000189613.613.61910.32

    Article  PubMed  CAS  Google Scholar 

  37. Klotz U (2003) Tramadol - the impact of its pharmacokinetic and pharmacodynamic properties on the clinical management of pain. Arzneimittelforschung 53):681–687

    PubMed  CAS  Google Scholar 

  38. Bamigbade TA, Langford RM (1998) Tramadol hydrochloride: an overview of current use. Hosp Med 59:373–376

    PubMed  CAS  Google Scholar 

  39. Lee CR, Mctavish D, Sorkin EM (1993) Tramadol: a preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in acute and chronic pain states. Drugs 46:313–340

    Article  PubMed  CAS  Google Scholar 

  40. Paar WD, Frankus P, Dengler HJ (1992) The metabolism of tramadol by human liver-microsomes. Clinical Investigator 70:708–710

    CAS  PubMed  Google Scholar 

  41. Liu HC, Wang N, Yu Y, Hou YN (2003) Stereoselectivity in trans-tramadol metabolism and trans-O-demethyltramadol formation in rat liver microsomes. Acta Pharmacol Sin 24:85–90

    PubMed  Google Scholar 

  42. Lintz W, Becker R, Gerloff J, Terlinden R (2000) Pharmacokinetics of tramadol and bioavailability of enteral tramadol formulations-4th Communication: Drops (without ethanol). Arzneimittelforschung 50:99–108

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank The Alfred Benzon Foundation, The Lundbeck Foundation, The Danish Medical Research Council and The Danish Clinical Intervention Research Academy for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasmus Steen Pedersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, R., Damkier, P. & Brøsen, K. Enantioselective pharmacokinetics of tramadol in CYP2D6 extensive and poor metabolizers. Eur J Clin Pharmacol 62, 513–521 (2006). https://doi.org/10.1007/s00228-006-0135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-006-0135-x

Keywords

Navigation