Skip to main content
Log in

Genetic variability in Gymnodiniaceae ITS regions: implications for species identification and phylogenetic analysis

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The internal transcribed spacer (ITS) regions and 5.8S rRNA genes from several strains of toxic Gymnodiniaceae were sequenced and subjected to phylogenetic analysis with other Gymnodiniaceae species. Sequence comparisons showed that high sequence divergence existed in Gymnodiniaceae, especially in the genus Gymnodinium. The amplicons of the ITS regions from Amphidinium and Gyrodinium species were 438–439 and 604–605 bp, respectively, and those of the Gymnodinium species ranged from 575 to 615 bp. The mean distance value within Gymnodinium, calculated from the ITS sequence, was 0.68827 (range: 0–0.92323), 0.11342 for Amphidinium (range: 0.00467–0.17120) and 0.2005 for Karenia (range: 0.00521–0.29971). Low distance values were found within the species Gyrodinium instriatum (<0.01) and Karlodinium micrum (<0.02). Amphidinium remarkably had a shorter ITS than did other genera in Gymnodiniaceae, this implied that Amphidinium might be distant from the other Gymnodiniaceae and supported Saunders’ opinion that the taxonomy of Amphidinium needs to be reevaluated. Largely congruent phylogenetic trees were produced by the maximum-parsimony method (PAUP), maximum-likelihood method (PAUP) and Bayesian inference (MrBayes), whereas the three analyses showed that the genera Gymnodinium and Karenia are unresolved groups in phylogeny. Minor sequence divergence was found within the different clones of Amphidinium carterae, suggesting that the ITS regions are suitable as genus- and species-specific oligonucleotide probes to rapidly detect and identify the red tide-forming algal species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Adachi M, Sako Y, Ishida Y (1996) Analysis of Alexandrium (Dinophyceae) species using sequences of the 5.8S ribosomal DNA and internal transcribed spacer regions. J Phycol 32:424–432

    CAS  Google Scholar 

  • Adachi M, Sako Y, Ishida Y (1997) Analysis of Gymnodinium catenatum (Dinophyceae) using sequences of the 5.8S rDNA-ITS regions and random amplified polymorphic DNA. Fish Sci (Tokyo) 63:701–707

    Google Scholar 

  • Anderson DM (1995) Identification of harmful algal species using molecular probes: an emerging perspective. In: Lassus P, Arzul G, Gentien P, Marcaillou C (eds) Harmful marine algal blooms. Lavoisier, Paris, pp 3–13

  • Appels R, Honeycutt RL (1986) rDNA: evolution over a billion years. In: Dutta SK (ed) DNA systematics, vol II. Plants. CRC, Boca Raton, Fla., pp 81–135

  • Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hall, New York

  • Bachellerie JP, Qu LH (1993) Ribosomal RNA probe for detection and identification of species. In: Hyde JE (ed) Protocols in molecular parasitology. Humana, Clifton, N.J., pp 249–264

  • Baillie BK, Belda-Baillie CA, Maruyama T (2000) Conspecificity and indo-Pacific distribution of Symbiodinium genotypes (Dinophyceae) from giant clams. J Phycol 36:1153–1161

    CAS  Google Scholar 

  • Bakker FT, Olsen JL, Stam WT, Van den Hoek C (1992) Nuclear ribosomal DNA internal transcribed spacer regions (ITS-1 and ITS-2) define discrete biogeographic groups in Cladophora albida (Chlorophyta). J Phycol 28:839–845

    CAS  Google Scholar 

  • Bakker FT, Olsen JL, Stam WT (1995) Global phylogeography in the cosmopolitan species Cladophora vagabunda (Chlorophyta) based on nuclear rDNA internal transcribed spacer sequences. Eur J Phycol 30:197–208

    Google Scholar 

  • Berland B, Lassus P (1998) Toxic efflorescences in French coastal waters: ecology, ecophysiology and toxicology. Oceanogr Lit Rev 45:504

    Google Scholar 

  • Chen YQ, Qu HL (1999) Molecular criteria for the delimitation of Alexandrium species based on the analyses of rDNA ITS. Acta Sci Nat Univ Sunyatseni 38:7–11

    CAS  Google Scholar 

  • Chen YQ, Qu LH, Qiu XZ, Zeng LM, Qi YZ (1997) Method for PCR amplification of dinoflagellate rDNA with individual cells and its application in the identification of algae species. Acta Sci Nat Univ Sunyatseni 36:66–69

    CAS  Google Scholar 

  • Chen YQ, Wang N, Zhou H, Zhang P, Qu LH (2001) Molecular evidence identifies bloom-forming Phaeocystis (Prymnesiophyta) from coastal waters of southeast China as Phaeocystis globosa. Biochem Syst Ecol 29:15–21

    Google Scholar 

  • Chen YQ, Shao P, Wang N, Zhou H, Qu LH, Medlin LK (2003) Molecular identification of bloom-forming species Phaeocystis globosa (Prymnesiophyta) and its dispersal based on rDNA ITS sequence analysis. Acta Oceanol Sin 22:79–84

    CAS  Google Scholar 

  • Daugbjerg N, Hansen G, Larsen J, Moestrup Ø (2000) Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU-rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39:302–317

    Google Scholar 

  • Engelen AH (1995) Conspecificity of the dinoflagellates Gyrodinium aureolum and Gymnodinium nagasakiense. A sequence analysis of the 18S, ITS and 26S nuclear ribosomal DNA. MSc repon, Department of Marine Biology, Biological Centre University of Groningen, Groningen

  • Felsenstein J (1985) Confidence limits on phylogenies. An approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Fensome RA, Taylor FJR, Norris G, Sarjeant WAS, Wharton DI, Williams GL (1993) A classification of living and fossil dinoflagellates. Micropaleontology 7[Spec Publ]:1–349

  • Guillou L, Nézan E, Cueff V, Erard-Le Denn E, Cambon-Bonavita M-A, Gentien P, Barbier G (2002) Genetic diversity and molecular detection of three toxic dinoflagellate genera (Alexandrium, Dinophysis, and Karenia) from French coasts. Protist 153:223–238

    CAS  PubMed  Google Scholar 

  • Hansen G, Daugbjerg N, Henriksen P (2000) Comparative study of Gymnodinium mikimotoi and Gymnodinium aureolum comb. nov. (=Gyrodinium aureolum) based on morphology, pigment, composition, and molecular data. J Phycol 36:394–410

    Article  Google Scholar 

  • Huang CJ, Dong QX (2000) Taxonomic and biological studies on causative organisms from a large scale red tide occurrence in Zhujiang river estuary in the spring, 1998. Oceanol Limnol Sin 31:197–204

    CAS  Google Scholar 

  • Lajeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phycol 37:866–880

    CAS  Google Scholar 

  • Lange M, Chen YQ, Medlin LK (2002) Molecular genetic delineation of Phaeocystis species (Prymnesiophyceae) using coding and non-coding regions of nuclear and plastid genomes. Eur J Phycol 37:77–92

    Article  Google Scholar 

  • Leoblich AR (1984) Dinoflagellate evolution. In: Spector DL (ed) Dinoflagellates. Academic, New York, pp 481–522

  • Mau B, Newton M (1997) Phylogenetic inference for binary data on dendrograms using Markov chain Monte Carlo. J Comp Graph Stat 6:122–131

    Google Scholar 

  • Mau B, Newton M, Larget B (1999) Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics 55:1–12

    CAS  PubMed  Google Scholar 

  • Miller PE, Scholin CA (1996) Identification of culture Pseudo-nitzschia (Bacillariophyceae) using species-specific LSU rRNA–targeted fluorescent probes. J Phycol 32:646–655

    CAS  Google Scholar 

  • Millner PD, Mulbry WW, Reynolds SL (2001) Taxon-specific oligonucleotide primers for detection of two ancient endomycorrhizal fungi, Glomus occultum and Glomus brasilianum. FEMS Microbiol Lett 196:165–170

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Suzuki S, Hiromi J (1995) Population dynamics of heterotrophic dinoflagellates during a Gymnodinium mikimotoi red tide in the Seto Inland Sea. Mar Ecol Prog Ser 125:269–277

    Google Scholar 

  • Nakamura Y, Suzuki S, Hiromi J (1996) Development and collapse of a Gymnodinium mikimotoi red tide in the Seto Inland Sea. AME 10:131–137

    Google Scholar 

  • Partensky F, Vaulot D, et al (1998) Morphological and nuclear analysis of the bloom-forming dinoflagellates Gyrodinium aureolum and Gymnodinium nagasakiense. J Phycol 24:408–415

    Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Rannala B, Yang ZH (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311

    CAS  PubMed  Google Scholar 

  • Rodríguez F, Oliver JF, Marín A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:485–501

    PubMed  Google Scholar 

  • Santos SR, Toylor DJ, Coffroth MA (1995) Genetic comparisons of freshly isolated versus cultured symbiotic dinoflagellates: implication for extrapolating to the intact symbiosis. J Phycol 37:900–912

    CAS  Google Scholar 

  • Saunders GW, Hill DRA, Sextion JP, Andersen RA (1997) Small-subunit ribosomal RNA sequences from selected dinoflagellates: testing classical evolutionary hypotheses with molecular systematic methods. Plant Syst Evol Suppl 11:237–257

    CAS  Google Scholar 

  • Scholin CA, Herzog M, Sogin M (1994) Identification of group- and strain-specific genetic markers for globally distributed Alexandrium (Dinoflagellate). II. Sequence analysis of a fragment of the LSU rRNA gene. J Phycol 30:999–1011

    CAS  Google Scholar 

  • Scholin CA, Marin R III, Miller PE (1996) DNA probe-based assays for rapid detection of toxic algal species in environmental samples. J Phycol 32[Suppl]:43

  • Steidinger KA, Tangen K (1996) Dinoflagellates. In: Tomas CR (ed) Identifying marine diatoms and dinoflagellates. Academic, San Diego, pp 446–453

  • Swofford DL (2000) PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer, Sunderland, Mass.

  • Taylor FJR (1980) On dinoflagellate evolution. Biosystems 13:65–108

    CAS  PubMed  Google Scholar 

  • Taylor FJR (1987) Taxonomy and classification. In: Taylor F (ed) The biology of dinoflagellates. Bot Monogr (Oxf) 21:723–731

    Google Scholar 

  • Taylor FJR (1993) The species problem and its impact on harmful phytoplankton studies. In: Smayda TJ, Shimizu Y (eds) Toxic marine dinoflagellates. Elsevier, New York, pp 81–86

  • Thompson JD, Gibson TJ, Plewniak F (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  • Vale P, Antónia de M Sampayo M (2001) Determination of paralytic shellfish toxins in Portuguese shellfish by automated pre-column oxidation. Toxicon 39:561–571

    Article  CAS  PubMed  Google Scholar 

  • Vogler AP, Desalle R (1994) Evolution and phylogenetic information content of the ITS-1 region in the tiger beetle Cicindela dorsalis. Mol Biol Evol 1:253–269

    Google Scholar 

  • Wang ZH, Qi YZ, Yin YW, Jiang TJ, Xie LC (2001) Studies on the cause and the occurrence reasons of a Gyrodinium instriatum red tide in Shenzhen Bay in spring of 1998. Mar Sci (NY) 25:47–50

    Google Scholar 

  • Wilcox TP (1998) Large-subunit ribosomal RNA systematics of symbiotic dinoflagellates: morphology does not recapitulate phylogeny. Mol Phylogenet Evol 10:436–448

    CAS  PubMed  Google Scholar 

  • Wood AM, Leathan T (1992) The species concept in phytoplankton ecology. J Phycol 28:723–729

    Google Scholar 

  • Yang ZB, Hodgkiss IJ (1999) Massive fish killing by Gyrodinium sp. Harmful Algae News 18:4–5

    Google Scholar 

  • Yokouchi H, Takeyama H, Miyashita H, Maruyama T, Matsunaga T (2003) In situ identification of symbiotic dinoflagellates, the genus Symbiodinium with fluorescence-labeled rRNA-targeted oligonucleotide probes. J Microbiol Meth 53:327–334

    Article  CAS  Google Scholar 

  • Zardoya R, Costas E, López-Rodas V, Garrido-Pertierra A, Bautista JM (1995) Revised dinoflagellate phylogeny inferred from molecular analysis of large-subunit ribosomal RNA gene sequences. J Mol Evol 41:637–645

    CAS  PubMed  Google Scholar 

  • Zechman FW, Zimmer EA, Theriot EC (1994) Use of ribosomal DNA internal transcribed spacer for phylogenetic studies in diatoms. J Phycol 30:507–512

    CAS  Google Scholar 

  • Zhuang L, Chen YQ, Li QL, Qu LH (2001) Sequence determination and analysis of 18S rDNA and internal transcribed spacer regions of red tide–related Creratium furca. Oceanol Limnol Sin 32:148–154

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (no. 39970063), and the National Natural Science Foundation of Guangdong province, China (no. 001213), and the Red-Tide Key Project of the National Natural Science Foundation of Guangdong province, China (no. 011208). Special thanks go to Professor Mohsen Gha Dessy at Zhongshan University for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Qin Chen.

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, P., Chen, YQ., Zhou, H. et al. Genetic variability in Gymnodiniaceae ITS regions: implications for species identification and phylogenetic analysis. Marine Biology 144, 215–224 (2004). https://doi.org/10.1007/s00227-003-1157-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-003-1157-x

Keywords

Navigation