Skip to main content
Log in

Surface modification of birch veneer by peroxide bleaching

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

This study examined effects of surface modification with hydrogen peroxide (H2O2) on adhesive bond performance in birch veneer bonded with phenol–formaldehyde resin. The veneer was treated with 5% of H2O2 at 80 °C in the presence of alkali with the objective of improving adhesive bond performance and reducing the resin demand. The effects of the surface modification were determined by surface color measured with a spectrophotometer, bond performance tests with ABES (automated bonding evaluation system) and surface hydrophobicity with sessile contact angle measurements. Results demonstrated that veneer surface became significantly whiter, which also increased in lightness and decreased in redness and yellowness. ABES test revealed that a remarkable increase in bond performance in the treated veneer and the maximum bond strength with the treatment at 60 min, which was nearly twice as high as reference sample (5.42 → 9.94 N/mm2), was obtained. A notable decrease in contact angle measurements was also observed in the treated veneers (0° in 0.5 s). The surface modification of birch veneer with H2O2 + alkali demonstrated greater potential for the improvement of physical characteristics in veneer surface. Other aspects of H2O2 consumption during the treatment are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abenojar J, Barbosa AQ, Ballesteros Y, del Real JC, da Silva LFM, Martínez MA (2014) Effect of surface treatments on natural cork: surface energy, adhesion, and acoustic insulation. Wood Sci Technol 48(1):207–224

    Article  CAS  Google Scholar 

  • Aydin I, Demirkir C (2010) Activation of spruce wood surfaces by plasma treatment after long terms of natural surface inactivation. Plasma Chem Plasma Process 30(5):697–706

    Article  CAS  Google Scholar 

  • Chen CM (1970) Effect of extractive removal on adhesion and wettability of some tropical woods. Forest Prod J 20(1):36–41

    CAS  Google Scholar 

  • Chow SZ (1971) Infrared spectral characteristics and surface inactivation of wood at high temperatures. Wood Sci Technol 5(1):27–39

    Article  CAS  Google Scholar 

  • Chow SZ, Mukai HN (1972) Effect of thermal degradation of cellulose on wood-polymer bonding. Wood Sci 4(4):202–208

    CAS  Google Scholar 

  • Christiansen AW (1990) How overdrying wood reduces its bonding to phenol-formaldehyde adhesives––a critical-review of the literature. Part 1. Physical responses. Wood Fiber Sci 22(4):441–459

    CAS  Google Scholar 

  • Christiansen AW (1991) How overdrying wood reduces its bonding to phenol-formaldehyde adhesives––a critical-review of the literature. Part 2. Chemical-reactions. Wood Fiber Sci 23(1):69–84

    CAS  Google Scholar 

  • Costa N, Pereira J, Martins J, Ferra J, Cruz P, Magalhães F, Mendes A, Carvalho L (2012) Alternative to latent catalysts for curing UF resins used in the production of low formaldehyde emission wood-based panels. Int J Adhes Adhes 33:56–60

    Article  CAS  Google Scholar 

  • Ferra JMM, Ohlmeyer M, Mendes AM, Costa MRN, Carvalho LH, Magalhães FD (2011) Evaluation of urea-formaldehyde adhesives performance by recently developed mechanical tests. Int J Adhes Adhes 31(3):127–134

    Article  CAS  Google Scholar 

  • Frihart CR (2005) Wood adhesion and adhesives. In: Rowell RM (ed) Handbook of wood chemistry and wood composites, 1st edn. CRC Press, Boca Raton, Florida, pp 215–278

    Google Scholar 

  • Hse CY, Kuo ML (1988) Influence of extractives on wood gluing and finishing––a review. For Prod J 38(1):52–56

    CAS  Google Scholar 

  • Kamke FA, Lee JN (2007) Adhesive penetration in wood––a review. Wood Fiber Sci 39(2):205–220

    CAS  Google Scholar 

  • Kieber RJ, Helz GR (1986) Two-method verification of hydrogen peroxide determinations in natural waters. Anal Chem 58(11):2312–2315

    Article  CAS  Google Scholar 

  • Kuo M, Dicarlo D, Hse C (1984) Influence of extractives on bonding properties of white and southern red oak. J Adhes 16(4):257–277

    Article  CAS  Google Scholar 

  • Lindholm C, Jäkärä J, Mårtens H (2009) Bleaching of mechanical pulps. In: Lönnberg B (ed) Mechanical Pulping, 2nd edn. Paper Engineers’ Association, Helsinki, Finland, pp 360–398

    Google Scholar 

  • Matsuda K (1979) Studies on dyeing and bleaching of woods. bulletin of the Faculty of Education Kagoshima University. Nat Sci 30:51–69

    Google Scholar 

  • Nguen D (1975) Effect of wood extractives on cure of phenolic resin. Dissertation or Thesis, Oregon State University, Corvallis

  • Özcifci A, Yapici F, Altun S, Toker H, Baysal E, Senel A, Simsek H (2009) Glossiness, Color Stability, and Surface Roughness of Wood Treated with some Bleaching Chemicals. Wood Res 54(2):83–94

    Google Scholar 

  • Paddy JF (2005) Contact angle. In: Packham DE (ed) Handbook of adhesion, 2nd edn. Wiley, Chichester, England, pp 79–82

    Google Scholar 

  • Paxgon BH (2005) Wood composites––adhesive. In: Packham DE (ed) Handbook of Adhesion, 2nd edn. Wiley, Chichester, England, pp 617–620

    Google Scholar 

  • Pizzi A (2005) Wood adhesives––basics. In: Packham DE (ed) Handbook of adhesion, 2nd edn. Wiley, Chichester, England, pp 603–606

    Google Scholar 

  • Plomley KF, Hillis WE, Hirst K (1976) The influence of wood extractives on the glue-wood bond. I. The effect of kind and amount of commercial tannins and crude wood extracts on phenolic bonding. Holzforschung 30(1):14–19

    Article  Google Scholar 

  • Rohumaa A, Hunt CG, Hughes M, Frihart CR, Logren J (2013) The influence of lathe check depth and orientation on the bond quality of phenol-formaldehyde––bonded birch plywood. Holzforschung 67(7):779–786

    Article  CAS  Google Scholar 

  • Rohumaa A, Hunt CG, Frihart CR, Saranpää P, Ohlmeyer M, Hughes M (2014) The influence of felling season and log-soaking temperature on the wetting and phenol formaldehyde adhesive bonding characteristics of birch veneer. Holzforschung 68(8):965–970

    Article  CAS  Google Scholar 

  • Rohumaa A, Yamamoto A, Hunt CG, Frihart CR, Hughes M, Kers J (2016) Effect of log soaking and the temperature of peeling on the properties of rotary-cut birch (betula pendula roth) veneer bonded with phenol-formaldehyde adhesive. Bioresources 11(3):5829–5838

    Article  Google Scholar 

  • Wolkenhauer A, Avramidis G, Hauswald E, Militz H, Viöl W (2009) Sanding vs. plasma treatment of aged wood: a comparison with respect to surface energy. Int J Adhes Adhes 29(1):18–22

    Article  CAS  Google Scholar 

  • Yamamoto A, Rohumaa A, Kontturi E, Hughes M, Saranpää P, Andberg M, Vuorinen T (2013) Colorimetric behavior and seasonal characteristic of xylem sap obtained by mechanical compression from silver birch (Betula pendula). ACS Sustain Chem Eng 1(9):1075–1082

    Article  CAS  Google Scholar 

  • Yamamoto A, Rohumaa A, Kontturi E, Hughes M, Vuorinen T (2015a) The effect of hydrothermal treatment on the color stability and chemical properties of birch veneer surfaces. BioResources 10(4):6610–6623

    Article  CAS  Google Scholar 

  • Yamamoto A, Rohumaa A, Kontturi E, Hughes M, Vuorinen T (2015b) Chemical characteristics of squeezable sap of hydrothermally treated silver birch logs (Betula pendula): effect of treatment time and the quality of the soaking water in pilot scale experiment. Wood Sci Technol 49(2):289–302

    Article  CAS  Google Scholar 

  • Yamamoto A, Rohumaa A, Kontturi E, Hughes M, Vuorinen T (2015c) The chemical characteristics of squeezable sap from silver birch (Betula pendula) logs hydrothermally treated at 70 °C: the effect of treatment time on the concentration of water extracts. Wood Sci Technol 49(6):1295–1306

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Finnish Funding Agency for Technology and Innovation (TEKES) and industrial partners (UPM-Kymmene Wood Oy, Tikkurila Oyj, Stora Enso Timber Oy and Dynea Chemicals Oy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, A., Rohumaa, A., Hughes, M. et al. Surface modification of birch veneer by peroxide bleaching. Wood Sci Technol 51, 85–95 (2017). https://doi.org/10.1007/s00226-016-0880-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-016-0880-7

Keywords

Navigation