Skip to main content
Log in

Studies on the nanostructure of the cell wall of bamboo using X-ray scattering

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The relationship between the nanostructure of Moso bamboo (Phyllostachys edulis (Carr.) H. De Lehaie) and the radial distance from the lacuna and the age of the culm was studied using X-ray scattering and electron microscopy. The size of cellulose crystallites and the crystallinity increased, and the mean microfibril angle decreased from about 40º in the inner part to about 10º in the outer part of the culm showing that bamboo is a functionally graded material at the nanoscale. The mean thickness and length of crystallites in the 4.5-year-old sample from the inner to outer part of the culm were 29.6 ± 1.0 Å, 30.7 ± 0.5 Å, 31.6 ± 0.5 Å, and 247 ± 10 Å, 303 ± 10 Å, 328 ± 10 Å, respectively. The length of crystallites in the inner part of 0.5-year-old bamboo and in the outer part of 10.5-year-old bamboo was 30–40 Å lower than in the corresponding parts of the 4.5-year-old sample. The crystallinity and the thickness of crystallites showed no age-dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abe K, Yano H (2010) Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubenscens). Cellulose 17(2):271–277

    Google Scholar 

  • Amada S, Munekata T, Nagase Y, Ichikawa Y, Kirigai A, Yang Z (1996) The mechanical structures of bamboos in viewpoint of functionally gradient and composite materials. J Comp Mater 30:800–819

    Article  CAS  Google Scholar 

  • Andersson S (2007) A study of the nanostructure of the cell wall of the tracheids of conifer xylem by X-ray scattering. Ph.D. Thesis, University of Helsinki. Available at: http://urn.fi/URN:ISBN:952-10-3235-9

  • Andersson S, Serimaa R, Torkkeli M, Paakkari T, Saranpää P, Pesonen E (2000) Microfibril angle of Norway spruce [Picea abies (L.) Karst.] compression wood: comparison of measuring techniques. J Wood Sci 46:343–349

    Article  Google Scholar 

  • Andersson S, Serimaa R, Paakkari T, Saranpää P, Pesonen E (2003) The crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies [L.] Karst.). J Wood Sci 49:531–537

    Google Scholar 

  • Andersson S, Wikberg H, Pesonen E, Maunu SL, Serimaa R (2004) Studies of crystallinity of Scots pine and Norway spruce cellulose. Trees 18:346–353

    CAS  Google Scholar 

  • Cave ID (1997a) Theory of X-ray measurement of microfibril angle in wood, Part 1. The condition for reflection X-ray diffraction by materials with fibre type symmetry. Wood Sci Technol 31:143–152

    Article  CAS  Google Scholar 

  • Cave ID (1997b) Theory of X-ray measurement of microfibril angle in wood, Part 2. The diffraction diagram X-ray diffraction by materials with fibre type symmetry. Wood Sci Technol 31:225–234

    Article  CAS  Google Scholar 

  • Ding ZS (1980) Handbook of forest chemical industry. Chinese Forest Press, Beijing

    Google Scholar 

  • Ding XG, Cai HJ, Wu ZX, Chen Y, Zhang JF (2007) Systematic analysis on quick development of bamboo industry in study for successful Zhejiang province: a case development approach of China’s booming bamboo industry. Chin Forestry Sci Tech 6:74–82

    Google Scholar 

  • Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43:1407–1420

    Article  PubMed  CAS  Google Scholar 

  • Gritsch CS (2005) Ultrastructure of fibre and parenchyma cell walls during early stages of culm development in Dendrocalamus asper. Ann Bot 95:619–629

    Article  PubMed  Google Scholar 

  • He J, Tang Y, Wang SY (2007) Differences in morphological characteristics of bamboo fibres and other natural cellulose fibres: studies on X-ray diffraction, solid state 13C-CP/MAS NMR, and second derivative FTIR spectroscopy data. Iranian Poly J 16:807–818

    CAS  Google Scholar 

  • Jiang ZH (2007) Bamboo and rattan in the world. China forestry publishing house, Beijing

    Google Scholar 

  • Li XF, Chen QH, Lin JH, Zhuo DX, Wu XL (2008) Acetylation of Chinese bamboo flour and thermoplasticity. J For Res 19(1):69–71

    Article  Google Scholar 

  • Liese W (1998) The anatomy of bamboo culms. Technical Report. INBAR, Beijing

    Google Scholar 

  • Lotfy M, El-osta M, Kellogg RM, Foschi RO, Butters RG (1974) A mechanistic approach to crystallite length as related to cell-wall structure. Wood Fiber 6:36–45

    Google Scholar 

  • Müller M, Burghammer M, Sugiyama J (2006) Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction. Holzforschung 60:474–479

    Article  Google Scholar 

  • Nogata F, Takahashi H (1995) Intelligent functionally graded material: bamboo. J Compos Eng 5:743–751

    Article  Google Scholar 

  • Nomura T, Yamada T (1972) Structural observation on wood and bamboo by X-ray. Wood Res 52:1–12

    Google Scholar 

  • Nomura T, Yamada T (1977) On the discrete diffraction on small angle X-ray scattering of bamboo (Phyllostachs mitis). Wood Res 62:11–18

    Google Scholar 

  • Obataya E, Kitin P, Yamauchi H (2007) Bending characteristics of bamboo (Phyllostachys pubescens) with respect to its fiber–foam composite structure. Wood Sci Technol 41:385–400

    Article  CAS  Google Scholar 

  • Paakkari T, Blomberg M, Serimaa R, Järvinen M (1988) A texture correction for quantitative X-ray powder diffraction analysis of cellulose. J Appl Cryst 21:393–397

    Article  CAS  Google Scholar 

  • Parameswaran N, Liese W (1976) On the fine structure of bamboo fibres. Wood Sci Technol 10:231–246

    CAS  Google Scholar 

  • Parameswaran N, Liese W (1980) Ultrastructural aspects of bamboo cells. Cellulose Chem Technol 14:587–609

    Google Scholar 

  • Ray AK, Das SK, Mondal S (2004) Microstructural characterization of bamboo. J Mater Sci 39:1055–1060

    Article  CAS  Google Scholar 

  • Scurlock JMO, Dayton DC, Hames B (2000) Bamboo: an overlooked biomass resource? Biomass Bioenergy 19:229–244

    Article  CAS  Google Scholar 

  • Sharma YML (1980) Bamboo in Asia-Pacific region. In: Proceedings workshop on bamboo research in Asia, Singapore, pp 99–120, 28–30 May 1980

  • Silva ECN, Walters MC, Paulino GH (2006) Modeling bamboo as a functionally graded material: lessons for the analysis of affordable materials. J Mater Sci 41:6991–7004

    Article  CAS  Google Scholar 

  • Tanaka F, Koshijima T, Okamura K (1981) Characterization of cellulose in compression and opposite woods of a Pinus densiflora tree grown under the influence of strong wind. Wood Sci Technol 15:265–273

    Article  Google Scholar 

  • Vainio U, Andersson S, Serimaa R, Paakkari T, Saranpää P, Treacy M, Evertsen J (2002) Variation of microfibril angle between four provenances of Sitka spruce (Picea sitchensis [Bong.] Carr.). Plant Biol 4:27–33

    Article  Google Scholar 

  • Yang ZP, Xu SW, Ma XL, Wang SY (2008) Characterization and acetylation behavior of bamboo pulp. Wood Sci Technol 42:621–632

    Article  CAS  Google Scholar 

  • Yu QH, Yu YM, Jin YM, Ma LF (2004) Physico-mechanical properties of planted Phyllostachys praecox. J Zhejiang For College 21(2):130–133

    Google Scholar 

  • Yu HQ, Jiang ZH, Hse CY, Shupe TF (2008) Selected physical and mechanical properties of Moso bamboo (Phyllostachys pubescens). J Trop For Sci 20:258–263

    Google Scholar 

  • Zhang QS, Guan MJ, Ji WL (2002) Variation of Moso bamboo chemical compositions during mature growing period. J Nanjing For Univ (Natural Sciences Edition) 26(2):7–10

    Google Scholar 

  • Zheng JX, Dong WY, Chen C, Duan CX, Zhao JF, Lu ZH (2008) Studies on the growth and rhythm of natural Moso bamboo population in Haiziping. J Bamboo Res 27(2):32–37

    Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation (30730076), National Key Technology R&D Program in the 11th Five Year Plan of China (2008BADA9B03), Academy of Finland (1127759), and Helsinki University funds. K.L. thanks the National Graduate School in Materials Physics for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kirsi Leppänen or Benhua Fei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Leppänen, K., Andersson, S. et al. Studies on the nanostructure of the cell wall of bamboo using X-ray scattering. Wood Sci Technol 46, 317–332 (2012). https://doi.org/10.1007/s00226-011-0405-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-011-0405-3

Keywords

Navigation