Skip to main content
Log in

Modeling bamboo as a functionally graded material: lessons for the analysis of affordable materials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Natural fibers are promising for engineering applications due to their low cost. They are abundantly available in tropical and subtropical regions of the world, and they can be employed as construction materials. Among natural fibers, bamboo has been widely used for housing construction around the world. Bamboo is an optimized composite that exploits the concept of Functionally Graded Material (FGM). Biological structures such as bamboo have complicated microstructural shapes and material distribution, and thus the use of numerical methods such as the finite element method, and multiscale methods such as homogenization, can help to further understanding of the mechanical behavior of these materials. The objective of this work is to explore techniques such as the finite element method and homogenization to investigate the structural behavior of bamboo. The finite element formulation uses graded finite elements to capture the varying material distribution through the bamboo wall. To observe bamboo behavior under applied loads, simulations are conducted under multiple considerations such as a spatially varying Young’s modulus, an averaged Young’s modulus, and orthotropic constitutive properties obtained from homogenization theory. The homogenization procedure uses effective, axisymmetric properties estimated from the spatially varying bamboo composite. Three-dimensional models of bamboo cells were built and simulated under tension, torsion, and bending load cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Nogata F, Takahashi H (1995) Compos Eng 5:743

    Article  Google Scholar 

  2. Janssen JJA (1995) Building with bamboo. Intermediate Technology Publications, London

    Book  Google Scholar 

  3. Jayanetti DL, Follett PR (1998) Bamboo in construction. Trada, UK

    Google Scholar 

  4. Chung KF, Yu WK (2002) Eng Struct 24:429

    Article  Google Scholar 

  5. Ghavami K (1995) Cement Concrete Compos 17:281

    Article  CAS  Google Scholar 

  6. Okubo K, Fujii T, Yamamoto Y (2004) Compos Part A 35:377

    Article  Google Scholar 

  7. Ge XC, Li XH, Meng YZ (2004) J Appl Polymer Sci 93:1804

    Article  CAS  Google Scholar 

  8. Ghavami K (2004) Structure and Properties of Bamboo. PowerPoint presentation

  9. Amada S, Munekata T, Nagase Y, Ichikawa Y, Kirigai A, Yang ZF (1996) J Compos Mat 30:800

    Article  CAS  Google Scholar 

  10. Amada S, Ichikawa Y, Munekata T, Shimizu H (1997) Compos Part B 28:13

    Article  Google Scholar 

  11. Ray AK, Das SK, Mondal S, Ramachandrarao P (2004) J Mater Sci 39:1055

    Article  CAS  Google Scholar 

  12. Amada S, Ichikawa Y, Munekata T, Nagase Y, Shimizu H (1997) Compos Part B 28:13

    Article  Google Scholar 

  13. Ghavami K, Rodrigues CS, Paciornik S (2003) Asian J Civil Eng 4:1

    Google Scholar 

  14. Janssen JJA (1991) Mechanical properties of bamboo. Kluwer Academic Publishers

  15. Suresh S, Mortensen A (1988) Fundamentals of functionally graded materials. IOM Communications, London

    Google Scholar 

  16. Paulino GH, Jin Z-H, Dodds RH Jr (2003) In: Karihaloo B, Knauss WG (eds) Comprehensive structural integrity, vol 2. Elsevier, p 607

  17. Lakkad SC, Patel JM (1980) Fibre Sci Tech 14:319

    Article  Google Scholar 

  18. Lo TY, Cui HZ, Leung HC (2004) Mater Lett 58:2595

    Article  CAS  Google Scholar 

  19. Li SH, Zeng QY, Xiao YL, Fu SY, Zhou BL (1995) Mat Sci Eng C 3:125

    Article  Google Scholar 

  20. Amada S, Lakes RS (1997) J Mater Sci 32:2693

    Article  CAS  Google Scholar 

  21. Amada S, Untao S (2001) Compos Part B 32:451

    Article  Google Scholar 

  22. Nugroho N, Ando N (2001) J Wood Sci 47:237

    Article  Google Scholar 

  23. Lee AWC, Bai XS, Bangi AP (1997) Forest Prod J 47:74

    Google Scholar 

  24. Amada S, Terauchi Y (2001) In: Trumble K, Bowman K, Reimanis I, Sampath S (eds) Proceedings of the 6th International Symposium of Functionally Graded Materials, Estes Park, Colorado, Sep. 2000. The American Ceramic Society, p 763

  25. Bai XS, Lee AWC, Thompson LL, Rosowsky DV (1999) Wood Fiber Sci 31:403

    CAS  Google Scholar 

  26. Bathe K-J (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  27. Cook RD, Malkus DS, Plesha ME, Witt RJ (2002) Concepts and applications of finite element analysis 4th edn. John Wiley and Sons, USA

    Google Scholar 

  28. Sanchez-Palencia E (1980) Non-homogeneous media and vibration. Theory lecture notes in physics 127. Springer, Berlin

    Google Scholar 

  29. Santare MH, Lambros J (2000) ASME J Appl Mech 67:819

    Article  Google Scholar 

  30. Kim J-H, Paulino GH (2002) ASME J Appl Mech 69:502

    Article  Google Scholar 

  31. Yin HM, Sun LZ, Paulino GH (2004) Acta Mater 52:3535

    Article  CAS  Google Scholar 

  32. Nemat-Nasser S, Hori M (1993) Micromechanics: overall properties of heterogeneous materials. North-Holland, Amsterdam

    Chapter  Google Scholar 

  33. Kalamkarov AL, Kolpakov AG (1997) Analysis, design and optimization of composite structures. John Wiley and Sons, Chichester, England

    Google Scholar 

  34. Guedes JM, Kikuchi N (1990) Comp Meth Appl Mech Eng 83:143

    Article  Google Scholar 

  35. Rooney F, Ferrari M (2001) Int J Solids Struct 38:413

    Article  Google Scholar 

  36. Pindera MJ, Freed AD, Arnold SM (1993) Int J Solids Struct 30:1213

    Article  Google Scholar 

  37. Walters MC, Paulino GH, Dodds RH Jr (2004) Int J Solids Struct 41:1081

    Article  Google Scholar 

  38. Gere JM, Timoshenko SP (1990) Mechanics of Materials 3rd edn. PWS Publishing, Boston

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the U.S. National Science Foundation through the project CMS #0303492 “Inter-Americas Collaboration in Materials Research and Education” (P.I., Professor W. Soboyejo, Princeton University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glaucio H. Paulino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, E.C.N., Walters, M.C. & Paulino, G.H. Modeling bamboo as a functionally graded material: lessons for the analysis of affordable materials. J Mater Sci 41, 6991–7004 (2006). https://doi.org/10.1007/s10853-006-0232-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0232-3

Keywords

Navigation